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1 Introduction

Bread making is as much an art as a science. There are many factors at work to determine
how the final loaf will turn out. These variables include the activity of the starter, the water
to-flour-ratio, and the time and temperatures for the various fermenting, proofing, and rising
stages. The goal of this project is to add more science to the art of bread fermenting by
creating an advanced, FPGA controlled, bread proofing box. This bread proofing box will
allow precise control over the time, temperature, and humidity during the fermenting and
rising stages. This fine control over the fermenting conditions will allow for experiments to
be setup to determine the effects that temperature and humidity have on the final loaf of
bread.

Upon accomplishing the basic functionality of allowing precise control and conclusive
experimentation, several augmentations will be included in the final design. These augmen-
tations include extending the availability of the data by displaying current and prior data
though a web interface at real-time, minute resolution. By experimenting with different
temperature and humidity conditions, the bread can take on many different characteristics.
Through storing these characteristics in a database, users can view previous proofing runs
and any min/max and average conditions experienced. Ultimately, in accessing this data,
users may extend their control by analytically making statistic conclusions to determine op-
timal bread proofing conditions. Once the optional conditions are discovered, the box should
be able to be used to produce consistently delicious bread.

2 Requirements

All of the requirements are working towards the final goal of creating an experiential
bread proofing box that will allow experimenting with the effects temperature, humidity,
and time have on bread making.

Primary Goals:

1. Monitor Temperature of Box.
Monitor Humidity of Box.
Adjust Humidity and Temperature.

Timer for rising time.

S

Alarm for rising done.

6. LCD interface for button control.
Stretch Goals:

1. Web interface/app for real-time, remote monitoring and control.
2. Database to store previous proofing stages.

3. Monitoring system to check bread rising via ultrasound.



3 Method

This project can be subdivided into four major aspects: input, control, output, and
analysis. The system will use the control logic to make decisions based upon the input
provided to it, and those decisions will affect the output of the system over time.

3.1 Component List

The components used to build the bread box are listed in Table 1.

Item Specific Part Price
Humidity and Temperature Sensor HIH6130 $29.95
Ultrasonic Sensor HC-SR04 $ 3.95
Keypad PmodKYPD $ 9.99
Time Keeping PmodRTCC $ 8.99
Pin out PmodCON1 $ 4.99
Voltage level converter SparkFun Logic Level Converter $ 2.95
Bi- Directional
Relay module SunFounder2 Channel $ 6.79
Piezo Buzzer PS1240 $ 1.50
Humidifier HealthSmart Tabletop Humidifier! $15.00
Light bulb for Heat 125 watt incandescent heat lamp bulb $§ 4.97
Light socket Bayco 8.5” Clamp Light $ 6.47
Enclosure walls Foam Board $ 5.31
Enclosure Window 18” X 42” Impact Acrylic $11.97
Humidifier Connecting Tube Foil Dryer Duct $ 9.97

Table 1: Parts List

3.2 System Input

The system needs to accept programming input directly from the user as well as take
sensor input from the sensors. The user must be able to input timing, temperature, and
humidity settings using a keypad on the device. The humidity and temperature sensor must
also send its input to the FPGA for processing. Finally, an ultrasonic sensor may potentially
be used to monitor the rising state of the bread in future work. Figure 1 shows the particular
temperature and humidity sensor, the keypad, and the ultrasonic sensor that were selected
for this project.

!Obtained on clearance do to broken/missing top redirector. Originally $64.31.



Figure 1: Temperature and humidity sensor HIH6130, keypad pmodKYPD, and ultrasonic
sensor HC-SR04.

3.3 System Control

The control logic initially processes the inputs from the user and sets up the system
environment as required. Throughout the proofing process, this control logic continues to
make temperature and humidity decisions based upon the sensor input provided, as well
as the initial configuration that was set up by the user. The user input specifies multiple
time points and the desired temperature/humidity at those corresponding time points. The
controller stores this input and uses this data to maintain the temperature and humidity
between the bread rising stages. The LCD screen and web interface are used to display the
current stage and time remaining for that phase.

3.4 System Output

There are two types of output from the system. One type of output is an audible alert
to let the user know that the proofing process is complete. The alarm will sound to let the
user know that the bread is ready for the next step. The second kind of output involves
manipulating the temperature and humidity of the enclosure via the heat lamp and the
humidifier.

3.5 System Analysis

By developing a web interface, the temperature and humidity progression through time
within the bread proofing box can be graphically analyzed. By being able to view tem-
perature and humidity values graphically, users can compare final bread results with their
specified set points. Furthermore, in having access to these chart analyses, a better un-
derstanding can be developed in how temperature and humidity impact one another. To



accomplish this, data would not only have to be graphed on at a fine-grained resolution, but
must be stored to allow for further review, if necessary.

4 Design

4.1 Architecture Design

The architecture contains several key components that are directly related to the methods
described above. A high-level block diagram of the system can be found in Figure 2. The
main purpose of this project is to control a system based on a pre-configured, programmed
schedule of environmental conditions and on sensors that monitor the system. The output
are signals that manipulate the system by turning on and off power to a heat lamp and
humidifier. In order to streamline the creation of the control logic, a MicroBlaze soft-core
processor makes up the central core of the architecture. This soft-core processor is in charge
of more advanced input processing as well as communication via ethernet to the web server.
The set points will be based on the user’s programmed input and the current time. A
state machine outside of this soft-core processor is be used to make decisions based on the
current humidity and temperature and the set-points programmed by the user, then drives
the output devices to reach the desired humidity and temperature. The state machine’s set-
points are updated via a queue controller which keeps track of the current time and status
of the proofing box.
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Figure 2: Finalized high level block diagram



4.1.1 Changes from Proposal

Most major changes to the project revolved around the use of the MicroBlaze soft-core
processor. In the beginning design stages there was some uncertainty about the viability of
creating a successful design based on MicroBlaze due to its apparent complexity. Therefore,
much of the work was anticipated to be done via IP blocks outside of the processor, meaning
only the control logic would be run on MicroBlaze. The block diagram for this initial
architectural design can be seen in Figure 3. However, after the team gained a better
understanding of the fundamental workings of the MicroBlaze architecture and encountering
some difficulty in acquiring IP cores through OpenCores for both Ethernet and I?C modules,
more tasks were offloaded back onto the soft-core processor.

Ethernet

A

Y

Ethernet
Controller

Char Disp

2
Humidity/Temperature rc Controller —|

Sensor Input uBlaze
Controller

Y

> Character Display

iﬂmer —> Alarm
Current Temperature

Push Buttons —————> | Heat Controller
State Machine

Key Pad >

> Heat Lamp

External Real-time Clock —————>

Current Humidity | Humidity Controller
State Machine

> Humidifier

Top

Figure 3: Initial high level block diagram

In particular, utilizing MicroBlaze made available the AXI IIC IP for I?C communica-
tion and the AXI Ethernet Lite IP for basic Ethernet communications along with simple
usage examples. To allow for more custom VHDL logic to be written and implemented on
the FPGA, the control and decision state machines were migrated away from the soft-core
processor. This resulted in a more balanced design that takes into consideration both logic
level design flow as well as higher level architectural considerations.

4.2 Behavior Design

The high level block diagram shows the major components of the design and from it, the
RTL modules can be inferred. However, it does not show how the system will behave or
how the different components will work together as a whole. In order to design the behavior
of the bread box, a high level logic diagram was created and is shown as Figure 4. When
the bread box is first powered on the text “Bread Box” will appear on the screen. When
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any button is pressed the user will be prompted to enter a time for the the stage. Hitting
a number key will cause the number to be entered into the system and displayed on the
character display. If the wrong number is pressed the ‘B’ key, or backspace, can be used to
remove it one digit at a time. Once a time is entered and the user presses the ‘A’ key, the
user will be prompted to enter the target temperature for the stage. The unit of temperature
is degrees Fahrenheit. After the temperature is entered and ‘A’ is pressed, the user will be
prompted to enter the target humidity for the run. Humidity is entered as percent humidity.
Once the humidity value is entered and ‘A’ is pressed, the user will be prompted for the
next point. If the user presses ‘A’ they will be sent back to the enter time page and will be
prompted to enter data for the next stage in the run. Each proofing run is built up from
multiple smaller stages. Each stage has its own duration and set-points. As the user enters
the stages of the run, the points will be stored into the run RAM.

If the user presses ‘B’ then the first stage of the run will start. The display will show the
current state number, the time remaining, the current temperature, and the current humidity.
The data for the current stage will be read in from the run RAM. The information about the
current run will be sent to the input/output controllers, which will read the current values
from the sensors and control the heat lamp and humidifier, so that the set-points for the
current stage are reached.

The output control module utilizes a counter that ranges from 0 to 50 for both humidity
and temperature to give historical weight to the decision process. For example, if the tem-
perature readings from the sensor have recently been lower than the temperature set point,
the weighted counter is closer to 50. Assuming the temperature continues to be lower than
the set point, the counter will continue to increment to up until its max weight of 50. Now,
if the temperature suddenly shifts to be higher than the set point, the counter reverses its
count, slowly shifting its weight towards 0. Once the counter shifts past the threshold of 25
in either direction the corresponding output is toggled. To ensure that this toggling does
not occur too quickly and thus degrade or destroy the humidifier and heat lamp components
over time, a slow clock is used to update the counters and an even slower clock is used to
update the outputs based on these counters.

When the time remaining for the current stage reaches zero the stage will be read in and
started. If there are no more stages in the run RAM, the display will show alert and a buzzer
will sound. The buzzer will keep sounding until any button is pressed. Once a button is
pressed the bread box will return to its initial state and display “Bread Box” once again.

5 Division of Labor

It was important that the work laid out in this document could be divided into easily
divided parts. Each of these parts had to be discrete enough to allow members of the team
to work on their parts independently, without having to wait on unmet dependencies from
another team member. The major components of the design are fairly independent from
one another. For example, the state machines that control the temperature and humidity
could be written without knowing the specifics of how the sensor data is read in. Likewise
the sensor interface could be written independently of the other components. The divisions
of labor correspond to each of the major aspects of the project: reading and processing



sensor input, processing and tracking user run programming, developing state machines for
decision making and output control, assembling the physical components, and designing and
interfacing with the web application. By assigning a single group member to predominantly
reside over one or more aspects of the design, each design aspect can be accounted for and
properly verified. However, throughout the design some of these areas required more work
than the others, so each major part was further broken down into minor components and
frequently re-assigned to balance the workload between group members.

6 Design Flow and Verification Strategy

The design flow of this project closely followed the design flow as laid out in class. This
document describes the initial idea and describes the process used to develop the architecture.
It also includes a behavioral concept of this design and the results of building a RTL design
in which the signal interactions of each component are be mapped and better understood.
This involved further development of the behavioral code that describes the functionality of
the design. The RTL code can be synthesized into a netlist and placed onto the FPGA for
manual testing. All throughout the design, each stage was simulated and verified before the
next step in the design proceeded.

The ideal approach to simulating and verifying the functionality of this design would be to
break the design into submodules and testing each submodule individually throughout every
stage of the design. The most vital submodules are the output control module, the proofing
state module, both of which fit into the larger bread proofing top module. By creating test
benches for each submodule we can verify that expected outputs are properly generated
from the various combinations of inputs. Furthermore, because this project has many other
submodules besides these, it becomes necessary to combine the testing of some of these
submodules to save time. This combination is achieved by developing a single, higher level
test bench for testing various submodules of the design at once. For example, a single test
bench can be created for testing the functionality of the I?C controller submodule in relation
to the temperature and humidity output controller submodule. By combining modules in
this way, the tests can verify that not only do the modules achieve their individual intended
functionality, but also effectively function across the system in harmony with one other.
Once it is verified that multiple combinations of submodules function as intended, even
higher level test benches that encompass more modules can be written and run to ensure
the entire system of modules works cohesively.

This test bench model did not fit well when developing the web interface. Instead, a
more traditional software engineering test structure was used in which a variety of test cases
and edge cases were created to exercise and debug the web application to a reasonable
standard of operation. This approach may be viewed as analogous to verifying fireproofing
via flamethrower rather than by match, as it is much more difficult to control all of the
variables in a live and real-world test environment than in a simulated test bench; however,
it was decided constructing a mock server would be in the best interest in progressing the
interface’s development. By facilitating this server to test potential edge cases by sending
dummy data, the integration into the eventual Microblaze server proved seamless.



7 Verification and Testing

7.1 Proofing State Machine

The proofing state machine is one of the main components of the FPGA design. It is in
charge of keeping track of the state of the bread box. It also has the important job of reading
and writing values to the various memories and providing current run data to all of the other
components of the design. Since the proofing state machine is so central to the design, it
was verified with the test bench and also incrementally verified using the board. When there
were problems with the design, the test bench along with temporary debug values displayed
on the LED outputs were used to find the issue.
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Figure 5: Proofing State Test Bench

Figure 5 shows the test bench used to verify the behavior of the proofing state machine.
As the proofing state machine was incrementally built up, the test bench also was incremen-
tally built up to test out the new features of the proofing state machine. The figure shows
the final version of the test bench. The test bench was run for the duration of a mock setup
run. The transitions of the main state machine and the places where keys were pressed are
labeled. This test bench was a great help in verifying that the state machine would function
correctly.

Figure 5 shows the waveform for the entire duration of the test bench, because of this,
zooming in is necessary to be able to clearly read the state transitions. Let’0s now zoom in
on the start of the run to verify this portion of the larger state machine. Figure 6 shows the
region from the test bench we will zoom in to focus on. Figure 7 is the zoomed in region.

Figure 7 verifies the start of a bread proofing run once there are no more stages to be
entered. At the start of the waveform the Mode is still at next_point. In this mode the
board is waiting for the user to indicate if another stage in the proofing run will be added.
The first event that happens is the pressing of the ‘B’ button by the user. This is shown
in the figure by the arrow that points to the pulse signal and the b on the button line.
Pulse is used to indicate when a button press should be processed. Pulse will be high for
one clock cycle when a button is first pressed. The button press then causes the mode to
transition to run_setup. The run_setup state is used to initialize the base addresses for



the various RAMs, the run_sub_counter, and the run_stage. Next the mode is changed to
run_read_time. In this mode, the active run time is read from the run RAM into the local
signal run_time. Since the data is stored as shorts, and the RAM reads a byte at a time,
a run_sub_counter signal is used to set the signals to correctly read in the value. At the
end of the run_read_time mode, the run_time_remaining is set equal to the run_time.
The next mode is run_read_temp, and it reads the current active temperature into the
run_temp signal just like the time was read in. The following mode is run_read_humid,
and it reads the current active humidity into the run_humid signal just like the time was
read in. The next mode is run. In the run mode, the read in active values are put on the
external active_time, active_time_remaining, active_temp, and active_humid signals.
Additionally, the run_enable line is set high to indicate that the run has started. Thus
we have now verified the correct behavior of this portion of the proofing state machine.
The other portions of the state machines were also likewise verified; however, their in-depth
verification is not included in this report.
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Figure 7: Proofing State Test Bench Zoomed and Labeled

7.2 Output Control Machine

The output control fundamentally operates as a state machine which relies on a set of
stored values and a set of values read from the temperature humidity sensor. In order to
test the functionality of this state machine, is is necessary to design a test bench that is
capable of simulating both preset values and sensor readings on which the state machine
will operate. The state machine has predictable outputs based on the inputs provided to
it. In reality, this machine is two combined state machines operating independently within
the same module. One state machine deals with temperature readings and outputs while
the other deals with humidity readings and outputs. The code for these state machines can
be found in Appendix A.3. From this code it can be seen that if the set temperature and
humidity are higher than the temperature and humidity read from the sensor, then both
the humidity and temperature outputs will be high, otherwise they will be low. In the test
bench provided in Appendix B.2, the humidity being fed into the control state machine is
purposefully set lower than the humidity set point. It is also important to note that the test
bench sets the enable_output signal high in order to signal for the module that it is allowed
to change its temperature and humidity outputs. The results can be seen in Figure 8.
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Figure 8: Heat lamp and humidifier output control test bench results.

The important signals to watch in this simulation include the ones that affect the humidity
output. It can be seen that every pulse from the fast humidity clock brings about an
increment in the humidity counter, causing the counter to go above the “on” threshold of
decimal value 25. However, the humidity output does not immediately toggle on as soon
as this counter reaches 25. This is expected behavior and is done by design to prevent
unnecessary strobing of the heat lamp. Therefore, once the slow humidity clock pulses every
15 seconds, the humidity output is finally updated to logic high, meaning the humidifier
should now be on, thus increasing the humidity in the box. This particular simulation has
successfully verified the anticipated behavior of the VHDL code.

7.3 Touch Pad Input

The touch pad input component is used to determine which buttons are pressed on the
keypad by scanning the keypad column by column. The component outputs the column
to power and reads the rows that have pressed keys. The component outputs the decoded
output of a single press, a boolean for when there is a key pressed and the bit masks for
the pressed buttons when there is more than one button pressed. When there are multiple
buttons pressed the decoded output should hold the value of the last button pressed by
itself. The test bench emulates the pressing of no buttons, button “9” multiple buttons
simultaneously, button “1”7, and finally back to no presses. The test bench has asserts
throughout it that are used to verify correct behavior. Figure 9 shows the output from
running the test bench. From the output one can see that there were no failed asserts in the
run.

12
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Figure 9: Output from the VHDL test bench asserts.

Figure 10 shows the waveform of the test bench. Current state is the current step being
tested. The corresponding tests are labeled below the waveform. The DecodeOut does
indeed correspond to the button pressed; it also holds the previous value when multiple
buttons are pressed. The buttons bit field correctly updates to the pressed buttons and the
pressed boolean also changes correctly.
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Figure 10: Keypad Test Bench

¢
0.00 s 0.0l s 0.0z s 0.03 s 0.04 5 (
(K 1111 O 1111
0 X E X 1
0000 W 0200 | 4940 ) 494p (0102 ¥ 0p02 ) 0000
I | I
one two three four one
10000 ps
No Presses Press 9 'Press Multiple Press 1 No Presses

The double dabble component uses the double dabble algorithm to convert binary num-
bers to binary-coded decimal numbers. The test bench runs through all the possible input
values. The waveform shown in figure 11 shows some abbreviated results from the test. The
test shows that the binary input is indeed being correctly mapped to a binary-coded decimal.
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Figure 11: Double Dabble Test Bench
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7.5 BCD 2 Bin

The BCD 2 Bin component does the opposite of the double dabble component. It takes
a binary-coded decimal number and converts it into binary. The test bench runs through
many of the input combinations. Figure 12 shows the abbreviated results from the test
bench. The test shows that the binary-coded decimal number is being correctly converted
into a binary number.

0.000000001000 s

bame value 0.0000000 s |0.0000G01 s |0.0000002 s 0.0000011 s |0.000012 s |t
L1 1 1 L1 1 1 L1 1 1 L1 11 L1 1 1 111 [ ] 111 L1l Ll 11 Ll 1 1

o - bcd[4:0][3:0] | 0,0,0,0,0 0,0,0,0,0 0,0,0,0,1 0,0,0,0,2 | {0,0,0,1,0 0,0,0,2,0

° Julbin_out[ls:oll ]oooo 0000 0001 0002 ) { 000a 0014

Figure 12: BCD 2 Bin Test Bench

7.6 Buzzer

The buzzer module is in charge of creating a square wave at 20 KHz that will be used
to sound the Piezo buzzer. The component has a clock and an enable line for input and
generates the 10 KHz wave for output. Figure 13 is used to verify the correct behavior of the
module. From the waveform it can be verified that half of the pulse lasts for 0.1 ms which
corresponds to a frequency of 20 KHz.

1
Name Value |0'0 ns | |0 2 gs |
b enable |1 |
& buzzer t| |[o | =
ok 100 |1 A R
18 clk_period 10000 ps |{ 10000 §s
0.110000000 ms
| 0.0 ms o2 1
Lo b dn

Figure 13: Buzzer Test Bench

7.7 Server-Client Communication

Initially, the primary goal was to set up a server on the FPGA. By utilizing a Microblaze
soft processing core, the team was able to modify an echo server for sending a concatenated
string containing information related to current temperature, humidity, time remaining,
current stage, and stage duration. Because the web interface and Microblaze server commu-
nication could not necessarily be test benched using Vivado or ModelSim, other methods of
verification had to be utilized. On the client-side, to ensure no time gaps in data, the server
is polled every second. This translates into the application sending an acknowledgment to
the server indicating that it is ready to receive current readings. On the client-side, output
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is displayed indicating successful connection to server and corresponding data retrieval. As
aforementioned, the application polls the server every second, and retrieves a concatenated
string of temperature, humidity, stage, time remaining, and stage duration values. Figure
14 below details typical connection verification and data retrieval.

127.6.0.1 - - |[26/Nov/2016 14:36:23]' "GET /active/data?_=1480188768608 HTTP/1.1" 206 -
Initializing connection to server.. R

Connection established..
['81', '5B9', '1', '37', '6@']

127.8.0.1 - - F26/Nov/2a16 14:36: 24“ "GET /active/data?_=1480188768609 HTTP/1.1" 208 -
InltlﬁllZlng

I59Ii

1-second data polling frequency

lsllil lllil |36|il Isal

‘—[Temperature, Humidity, Stage, Time Remaining, Stage Duration]

"GET /active/data?_=148018876861@ HTTP/1.1" 200 -
' ‘— Successful communication established with server.

Figure 14: Typical client-side output.

On the server side, upon receiving an acknowledgment from the client that it is prepared
to receive measurements, the temperature/humidity is read. Alongside gathering sensor
readings, the server also accesses the Run RAM and retrieves information related to current
stage, time remaining in corresponding stage, and the duration of the run. After all of
the requested data is collected, they are concatenated into a single string and sent to the
interface. To ensure the data is properly transferred to the application, the string of readings
is displayed on-screen to indicate proper communication and transmission are achieved.
Figure 15 below details typical polling and data transmission experienced by the Microblaze
server. As can be seen from the same figure, the assigned network parameters are displayed.
This indicates that the server setup was successful and it is listening for any potential clients.
Alongside displaying the network parameters, the second-by-second sending of data to the
web application is also displayed to verify valid readings were taken and data transfer was
successful on the server end.
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——IwIP TCP echo server ———

TCP packets sent to port 6001 will be echoed back
link speed: 100

Board TP: 192.168.1.10

Netmask : 255.255.255.0

Gateway : 192.168.1.1

TCP echo server started @Q port 7

Temp reading: 68
Hum reading: 59
Concatenated reading: 68,59,1,2,3

Temp reading: 68
Hum reading: 59
Concatenated reading: 68,59,1,2,3

Temp reading: 68
Hum reading: 59
Concatenated reading: 68,59,1,2,3

Temp reading: 68
Hum reading: 58
Concatenated reading: 68,58,1,2,3

Figure 15: Server-side communication.

7.8 System Level Testing

In addition to using test benches to verify the behavior of the bread box, the team also
perform high level system tests on the hardware. These high level tests verified the correct
behavior of the system and led to useful discoveries.

The first discovery was that bounds were needed on the numbering so that users could
not add numbers past what the screen could show and also so that the users can erase more
than the beginning of the screen. These bounds were subsequently put into place and now
the users can only enter a max of 5 digits for the numbers and they can also no longer
backspace past the beginning of the number.

A second discovery was that a run cancel button would be very useful for the run page.
If the user wants to cancel a run gracefully without resetting the board, they can now press
the ‘E’ key to cancel the run and go back to the initial page.

8 Results

The final product of the careful design plans that were laid out and executed throughout
this project is a fully realized and operational bread proofing box. Although some issues
were encountered, these problems were either anticipated or overcome with enough effort.
While only a prototype, the design successfully meets and exceeds the goals initially set out
in the proposal, and even achieved some stretch goals.
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8.1 Bread Proofing Box

Figure 16: Bread Proofing Box

The constructed bread-proofing box can be viewed in Figure 16 above. The walls, base,
and top of the box were constructed with foam boards and adhered together with duct
tape. The front of the box utilized a plastic, transparent sheet for viewing the state of the
bread. To the left side of the box is the humidifier. By severing a hole into the side of
the box, the humidifier was successfully attached via drier duct. By strategically cutting
an opening atop the box, the heat lamp is able to securely rest directly over the bread.
Inside the enclosure, near the back-right corner, is where the temperature/humidity sensor
resides. The team tactically positioned it to be mid-height, away from direct light to achieve
balanced humidity and temperature readings.

In the Figure 17 below, the electronics for the bread proofing box can be seen. To the
top-right is the functional keypad for entering in set time, set temperature, and set humidity.
To the bottom-right is the character display for displaying information related to the current
stage, current temperature, current humidity, and time remaining in the stage. To the left of
the character display, is the Nexys 4 board itself. Connected to the Nexys 4 board is a piezo
buzzer and wires leading to a switch box just above the FPGA. The Arduino board on the
left-side is exclusively used to provide 5V power to the relays in the switch box that control
the humidifier and heat lamp. Finally, the gray-wired pin connector at the bottom-left
extends to connect to the temperature/humidity sensor situated within the box.
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Figure 17: View of bread box electronics

8.2 Controls

The bread proofing box worked correctly according to the behavior design outlined in
Section 4.2. The following pictures show the control of the bread box with the keypad and
character display. Figure 18 shows the initial page and welcome screen. Figure 19 shows the
page used to set the duration of a stage. 120 minutes have been entered for the duration.
Figure 20 shows the page used to set the temperature set point for the stage. 80 Degrees has
been entered as the target temperature. Figure 21 shows the page used to set the humidity
set point. 70% humidity has been entered. Figure 22 shows the next point page. ‘A’ is
pressed for yes and ‘B’ is pressed for no. Figure 23 shows the page that displays information
regarding the current stage while the bread box is running. ‘S’ stands for state and shows
the number of the current state. This number starts at 1 and increases for each additional
point in the run. ‘R’ stands for remaining and shows the time remaining in the current stage.
‘T” stands for temperature and shows the current temperature in the box. ‘H’ stands for
humidity and shows the current humidity in the box.
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Figure 18: Initial Page
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Figure 19: Time Page
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Figure 20: Temperature Page
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Figure 21: Humidity Page
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Figure 22: Next Point Page

Figure 23: Run Page Page
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8.3 Web Interface

As detailed previously, the web interface acts as a client that frequently polls the Microb-
laze for temperature, humidity, and timing information. By parsing through the received
data, the values are then displayed graphically on a minute-by-minute basis for the first
thirty minutes. As time progresses, the resolution of graphical display decreases, as depicted
in the Table 2 below. This is due to the specific chart package for the interface. Without the
premium package, the values would get truncated to the point of unreadability; therefore,
specific set-points are dynamically selected for displaying based upon the number of data
points themselves.

Datapoints Resolution

30 1-min
60 2-min
90 3-min
120 4-min
150 5-min
180 6-min
210 7-min
240 8-min
270 9-min
300 10-min
330 11-min
360 12-min

Table 2: Data resolutions for graphical analysis.
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Figure 24: Home screen of interface at minute 3 of an ongoing stage.
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Figure 25: Active proof at minute 27 of an ongoing stage.
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Alongside the displaying of temperature and humidity values, the team felt that saving
previous stage data would also be necessary. To accomplish this predefined stretch goal, a
MySQL server was facilitated. By allowing the web framework to gain access to the MySQL
server, the first three stages are capable of being stored. The manner in which the stages
are saved are determined by the stage value provided by the Microblaze server. Specifically,
by storing each current stage value as a session variable, the application compares the new
stage value to the old one. If the new stage value is “0” (indicating that the entire bread
proofing run has finalized) or greater than the previous stage value, the application knows
to store the previous stage data. This requires deleting any previous runs, resetting the
previous stage’s temperature, humidity, and time lists, and incrementing the stage counter.
Figures 26 and 27 detail two saved runs available for users to view. As shown in the images,
by clicking on a saved stage, a user can view the duration, min/max, and average values
experienced throughout the stage.

Stage 2 Report

a0
85 O o o O o O o o
j=1]
75
70

ESM

60
30 35 40 45 50 55 60 65 TFO TS5 B8O 85 20 925 100 105 110 115 120

Duration: 120.0

Average Temperature: 84.65

Temperature:
Max Temperature: 86.0
Min Temperature: 83.0
Humidity: Average Humidity: 64.75

Max Humidity: 67.0
Min Humidity: 62.0

Figure 26: Stage 2 report.
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Figure 27: Saved stages available for viewing.

8.4 Bread Making

Once the bread box became functional, it was time to make bread. The actual steps to
making the bread is a product of experience and no longer follows a fixed recipe; however, the
recipe that was used when starting out is included in Appendix D. The main steps to bread
making are mixing, autolyse, first knead, bulk ferment and folding, second knead, shaping,
final proof, scoring, and baking. Different bakers follow different methods and bread making
is sill very much an art form. The essential ingredients are water, flour, and salt. Starter is
also needed but can be cultivated by leaving a mixture of water and flour sitting out. The
starter our team used originally came from King Arthur Flour and has since been kept going
for 3 years. In addition to the necessary ingredients, sugar and olive oil were also added. The
sugar and the olive oil provide additional flavor. Additionally, the olive oil helps to soften
the crust, but can also lead to smaller air pockets.

The following figures are all from the various steps of making bread. The pictures are
from two separate uses of the bread box. Figures 28 and 29 are a before and after for the
bulk fermenting step for the first use. The resulting bread is shown in Figure 30. Figures 31
and 32 show the interior porous crumb of the bread.

Figure 33 shows the second run bread after the final proof step. The finished bread is
shown in Figure 34. The crumb is shown in Figure 35.

During the first run, the dough was not folded during the bulk fermentation stage. Not
folding the bread allowed time lapse footage to be made and allowed for an impressive before
and after picture. During the second run, the dough was folded during the bulk fermentation
stage. This caused the glutton structure to form better, which caused the loaf to rise better
in the oven. This change is the main reason the bread from the second run is taller and
airier than the first run.
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Figure 28: Before bulk ferment.

Figure 29: After bulk ferment.

26



Figure 30: Bread produced from first use.

Figure 31: Crumb of first artisan loaf.




Figure 32: Crumb of first sandwich loaf.

Figure 33: Final Proof of second bread.
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Figure 35: Crumb of second artisan loaf.




9 Future Work

9.1 Improvements

Although the project successfully met all the goals laid out for it, the team did uncover
various areas of future work while implementing the bread proofing box.

9.1.1 Enclosure

While testing the bread proofing box, the team discovered that the humidity will naturally
rise when moist dough is placed in a warm enclosure. Unfortunately, it is unknown if the
increase in moisture was caused by water evaporating from the surface of the bread or if it was
evaporating from the water reservoir of the humidifier. Since the humidity of the enclosure
rose past the set point without the humidifiers input, future work would be to determine the
source of the increased humidity and to determine is a humidity removal system is needed.

The team also discovered that the light is not all that great at holding a steady temper-
ature reading by the sensors. With a max toggle rate of 15 seconds, the temperature is able
to fluctuate by about +2 degrees. This issue could be resolved by using a dimmer switch
to control the light. The dimmer switch would allow the light to be dimmed to hold the
temperature at a steady level.

Another observation was that the foam board is not water proof, which could potentially
cause problems with the longevity of the box, especially since running at high humidity levels
can cause condensation to form bubbles on the walls. The box also began to warp after only
3 days of use. This could be a result of moisture inside the box affecting the walls or from the
weight of the lid itself. Moister is the most likely cause since the acrylic, with the back wall
edges, should be able to hold the lid without problems. The side walls would need some sort
of reinforcement to increase durability. Figure 36 shows the gap that has formed between
the acrylic and the side wall. When the box was first built, the acrylic was flush against the
outer wall.
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Figure 36: Walls are starting to warp outward.

9.1.2 Web Interface

In the saving and viewing previous stages within a run, the team encountered several
challenges. These challenges pertained to the linking of the MySQL server. Occasionally,
upon deleting and saving new runs, the database would lock up and freeze upon executing
queries. The remedy to this was simply restarting the MySQL server, and initializing the run
again. However, for stages lasting hours with a vast array of data, it would be tremendously
inconvenient for the data to not save properly due to database server lock-ups. Therefore, a
new approach to database linking is recommended. For instance, because the interface and
server has internet access, utilizing more consistent database options such as Google Firebase
could prove advantageous. However, drawbacks may correspond to always requiring internet
access to save proofing runs and potential network security concerns.

9.2 Additional Features

9.2.1 Enclosure

Additional future work also includes adding new features to the bread box. One such
feature is the addition of the real-time clock module to allow the timer to be more accurate.
Although using a counter for the on-board 100 MHz clock seems to allow the timer to keep
accurate time, a more accurate external real-time clock could improve the timers accuracy
for long runs. It could also enable the creation of additional features, like delayed start and
ending at a given clock time. Another feature possibility, would be the addition of sensors
to monitor the bread as it rises. One possible sensor for this end is an ultrasonic sensor to
measure the height of the bread.
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9.2.2 Web Interface

For expanding the capabilities of the web interface, the database can be linked within
the Microblaze server itself. Ideally, this would be the preferred approach as the data would
be stored on the server-side as opposed to the client-side. Due to time constraints and the
lack of hardware availability (single FPGA board for the entire group), this approach was
unattainable. Currently, the interface is only capable of displaying data once it connects
to the server, which could potentially disregard many previous data points; however, by
accessing the database on the server-side, the run data will be available, from their initial
stages, for display across all prospective clients.

10 Conclusion

Sourdough bread making is age-old process that is as much as an art form as it is science
in action. Experience and scientific knowledge is needed to make great bread. With the
help of modern technology, the kitchen can become a scientific playground and a laboratory
of art, allowing great discoveries to come about from chance and controlled experiments.
This project set out to design and build a custom bread proofing box that utilizes the skills
of modern engineers and takes advantage of the modern technological capabilities found on
the Nexys 4 board. By documenting and following a well-defined design specification, the
project found greater success in not only laying out realistic goals, but also in reaching and
surpassing those goals. As a result, a fully-functioning bread proofing box was created. By
allowing users the capability of monitoring their bread in a controlled environment, they
are able to establish optimal proofing conditions to further enhance and progress the art of
bread making.
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Appendix A VHDL Source Code

A.1 Bread Box Top-level

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

use work.common. all;

entity top is

port (
— General Ports
clk_100 : in std_logic; — 100 MHz clock
reset_n : in std_logic; — reset signal
SW : in std_logic_vector (15 downto 0); — Switches for Debug
led : out std_logic_vector (15 downto 0); — LED for debug
RGB1_Red : out std_logic;
RGB2_Blue : out std_logic;
seg : out std_logic_vector (7 downto 0); — Seg for debug
an : out std_logic_vector (7 downto 0); — Seg for debug

— Character Display
JA : inout STDLOGIC.VECTOR (7 downto 0);

— Keypad
JB : inout std_logic_vector (7 downto 0);

— RTC & Humidity and Temperature Sensor
JC : inout std_logic_vector (7 downto 0);
JD : inout std_logic_vector (7 downto 0);

— USB Uart for debug messages from micro blaze

usb_uart_rxd : in std_logic;

usb_uart_txd : out std_logic;

— FEthernet

PhyClk50Mhz : out std_logic;

PhyMdc : out STD_LOGIC;

PhyCrs : in STD_LOGIC;

PhyRxErr : in STD_LOGIC;

PhyRxd : in STDLOGIC.VECTOR ( 1 downto 0 );
PhyTxEn : out STD_LOGIC;

PhyTxd : out STDLOGIC.VECTOR ( 1 downto 0 );
PhyMdio : inout STD_LOGIC;

— Cellular memory

MemAdr : out STD_LOGIC.VECTOR ( 22 downto 0 );
RamADVn : out STD_LOGIC;

RamLBn : out std_logic;

RamUBn : out std_logic;

RamCEn : out STD_LOGIC;

RamCRE : out STD_LOGIC;

RamOEn . out STD_LOGIC;

RamWait : in STD_LOGIC;
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RamWEn : out STD_LOGIC;
MemDB : inout STD_LOGIC_.VECTOR ( 15 downto 0 )
);

end entity top;

architecture structural of top is

— Components

—— Micro Blaze
component processing_core_wrapper
port (
ETH_mdio.mdc_mdc : out STD_LOGIC;
ETH _rmii_crs_.dv : in STD_LOGIC;
ETH_rmii_rx_er : in STD_LOGIC;
ETH_rmii_rxd : in STDLOGIC.VECTOR ( 1 downto 0 );
ETH _rmii_tx_en : out STD_LOGIC;
ETH_rmii_-txd : out STDLOGIC.VECTOR ( 1 downto 0 );
USB_Uart_rxd : in STD_LOGIC;
USB_Uart_txd : out STD_LOGIC;
cellular RAM _addr : out STDLOGIC.VECTOR ( 22 downto 0 );
cellular_ RAM _adv_ldn : out STD_LOGIC;
cellular RAM _ben : out STDLOGIC.VECTOR ( 1 downto 0 );
cellular _ RAM_ce_n : out STD_LOGIC;
cellular _ RAM_cre : out STD_LOGIC;
cellular_RAM _oen : out STD_LOGIC;
cellular _ RAM _wait : in STD_LOGIC;
cellular _.RAM_wen : out STD_LOGIC;
cellular _ram_dq-io : inout STDLOGIC.VECTOR ( 15 downto 0 );
curr_humid_tri_o : out STDLOGICVECTOR ( 15 downto 0 );
curr_temperature_tri_o : out STDLOGICVECTOR ( 15 downto 0 );
duration_tri_i : in STDLOGIC.VECTOR ( 15 downto 0 );
eth_mdio_mdc_mdio_io : inout STD_LOGIC;
eth_ref_clk : out STD_LOGIC;
gpio_stage_tri_i : in STDLOGIC.VECTOR ( 15 downto 0 );
iic_rtl_scl_io : inout STD_LOGIC;
iic_rtl_sda_io : inout STD_LOGIC;
remaining_tri_-i : in STDLOGIC.VECTOR ( 15 downto 0 );
reset : in STD_LOGIC;
sys_clock : in STD_LOGIC
)

end component ;

—— Counter to generate SCL
component c_counter_binary_0 IS
PORT (
CLK : IN STD_LOGIC;
Q : OUT STD_LOGIC_VECTOR(11 DOWNIO 0)
)

END component ;

— Seven segment display controller
component display
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Port ( data
carry
clk
seg_number
end component ;

in STDLOGIC.VECTOR (15 downto 0);
in STD_LOGIC;

in STD_LOGIC;

out STD_LOGICVECTOR (63 downto 0) );

— Seven segment component
component sSegDisplay

Port (ck in std_logic; —
clock
reset_n in std_logic; —
number in std_logic_vector (63 downto 0); —
number to be displayed
seg out std_logic_vector (7 downto 0); —
cathodes
an out std_logic_vector (7 downto 0)); —

(active—low,

end component ;

component RAM_2K_8
port (

DOA :

DOB :

DOPA
DOPB :
ADDRA :
ADDRB :

CLKB :

DIA
DIB

DIPA
DIPB :

ENA

SSRA :
SSRB :

WEA :
WEB
)

end component ;

due to transistor complementing)

out std_logic_vector (7 downto 0);
out std_logic_vector (7 downto 0);
out std_logic_vector (0 downto 0)
out std_logic_vector (0 downto 0);
in std_logic_vector (10 downto 0);
in std_logic_vector (10 downto 0)
in std_logic;

in std_logic;

in std_logic_vector (7 downto 0)
in std_logic_vector (7 downto 0);
in std_logic_vector (0 downto 0)
in std_logic_vector (0 downto 0)
in std_logic;

in std_logic;

in std_logic;

in std_logic;

in std_logic;

in std_logic

b

3

bl
)

)

component Constant_Character _ RAM

port (
DOA :
DOB :

DOPA
DOPB :

ADDRA

ADDRB :
CLKA
CLKB :

DIA :
DIB

out std_logic_vector (7 downto 0);
out std_logic_vector (7 downto 0);

b

out std_logic_vector (0 downto 0)
out std_logic_vector (0 downto 0);

: in std_logic_vector (10 downto 0);
in std_logic_vector (10 downto 0);

in std_logic;

in std_logic;

)

in std_logic_vector (7 downto 0);
in std_logic_vector (7 downto 0);
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DIPA : in std_logic_vector (0 downto 0);
DIPB : in std_logic_vector (0 downto 0);
ENA : in std_logic;

ENB : in std_logic;

SSRA : in std_logic;

SSRB : in std_logic;

WEA : in std_logic;

WEB : in std_logic

)

end component ;

component Message_Setter

Port (

CLK : in STD_LOGIC; — Clock

Update_Pulse : in std_logic; —— Pulse to update
the screen

Reset : in STD_LOGIC; — Reset

Static_Address_Base : in integer range 0 to 2047; — Base address for
static display

Dynamic_Address_Base : in integer range 0 to 2047; — Base address for
dynamic display

ProcDataRAM_In : out T_RAM _Port_In; — Processed Data
Ram

ProcDataRAM_Out : in T_RAM_Port_Out; —— Processed Data
Ram

ConstCharRAM_In : out T_RAM_Port_In; —— Constant Char RAM

ConstCharRAM_Out : in T_RAM_Port_Out; —— Constant Char RAM

DispCLR : out STD_LOGIC; —— Clear Display

DispClearMem : out STD_LOGIC; —— Clear Display Mem

DispAddr : out integer range 0 to 31; — Display Mem Addr

DispData : out STDLOGIC.VECTOR (7 downto 0); — Display Data

DispDataEnable : out STDLOGIC; — Display Data
Enable

UpdateDisplay : out STD_LOGIC; —— Update Char
Display

DispInProg : in STD_LOGIC) ; — Display Updating

end component ;

component CharDisplay

Port ( CLK : in STD_LOGIC; —clock

Reset : in STD_LOGIC; — Reset

CLR : in STD_LOGIC; ——clears screen
only

ClearMem : in STD_LOGIC; —clears memory

RST : in STD_LOGIC; —sets screen to
power up state — clears screen

DAddr : in integer range 0 to 31; —address of new
character

Dataln : in STDLOGICVECTOR (7 downto 0); —New character

DatalnEnable : in STD_LOGIC; —signal to read

in new character
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UpdateDisplay : in STD_LOGIC;
DispInProg
line display

JA

inout

out STD_LOGIC;

STD_LOGIC_.VECTOR (3 downto 0));

—1Indicates new

—pins of CLS

Display

end component ;

component Keypad
Port (

);

clk : in  std_logic;

Row : in  std_logic_vector (3 downto 0);
Col : out std_logic_vector (3 downto 0);
—— Last number pressed by itself

DecodeOut : out std_logic_vector (3 downto 0);
— Vector of the buttons pressed

buttons : out std_logic_vector (15 downto 0);

—— Boolean if buttons are pressed.

pressed : out std_logic

end component ;

— RIC

component RTC is
port (

);

end component ;

clk
rst
SCL
SDA

in std_logic;
in std_logic;
inout std_logic;
inout std_logic

component output_control is
Port (

end component ;

)3

clk
rst
curr_temperature
curr_humidity
set_temperature
set_humidity
enable
heat_control

in STD_LOGIC;
in std_logic;

in std_logic_vector (15 downto 0);

in std_logic;

out STD_LOGIC;

humid_control : out STD_LOGIC

component Proofing_State

Port (

CLK,

clock
reset_n

in std_logic;

display_update_pulse : in std_logic;

update run display
in std_logic;

clk_1hz

clock used to update the timer
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button : in std_logic_vector (3 downto 0); — Button
press from keypad

pressed : in std_logic; — Pressed
from keypad

curr_humidity : in std_logic_vector (15 downto 0); — Current
humidity from the sensor

curr_temperature : in std_logic_vector (15 downto 0); — Current
temperature from the sensor

Mode : out t_proofer_state; — Current
mode of the state machine

Static_Address_Base : out integer range 0 to 2047, —— Base
address for static display

Dynamic_Address_Base : out integer range 0 to 2047; —— Base
address for dynamic display

DisplayDataRAM_In : out T_RAM_Port_In; — Display
Data Ram

DisplayDataRAM_Out : in T_RAM_Port_Out; — Display
Data Ram

RunDataRAM_In : out T_RAM_Port_In; —— Run Data
Ram

RunDataRAM_Out : in T_RAM_Port_Out; — Run Data
Ram

buzzer_enable : out std_logic; —— FEnable the
buzzer

active_time : out std_logic_vector (15 downto 0); — Active Time

active_time_remaining : out std_logic_vector (15 downto 0); —
Remaining time for the run

active_temp : out std_logic_vector (15 downto 0); — Active
Temperature

active_humid : out std_-logic_vector (15 downto 0); — Active
Humidity

active_stage : out std_logic_vector (15 downto 0); — Active
stage

run_enable : out std_logic — Is the

device running?

);

end component ;

component CDiv
GENERIC (
TC : integer := 18 —Time Constant. 15 for “1khz — 50000000/
TC"j) Hz
)

PORT (
Cin : IN STD_LOGIC;
Reset : IN STD_LOGIC;
Cout : OUT STD_LOGIC) ;
end component ;

component buzzer

port (
clk_100 : in std_logic;
enable : in std_logic;
buzzer : out std_logic
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)3

end component ;

— Signals
signal reset : std_logic;
signal clk : std_logic;

— Signals for output display

signal result_data : std_logic_vector (15 downto 0);

signal carry : std_logic;

signal display _number : std_logic_vector (63 downto 0);

— Microblaze

signal cellular RAM _ben : std_logic_vector (1l downto 0);

— Bread Machine Control

signal current_state : t_proofer_state;
signal real_time_clk : std_logic;
signal update_run_display : std_logic;

— OQutput control signals

signal buzzer_enable : std_logic;

— Character display signals

signal Static_Address_Base : integer range 0 to 2047,
static display

signal Dynamic_Address_Base : integer range 0 to 2047;

dynamic display

— Keypad

signal keypad_pressed : std_logic;
signal keypad_button : std_logic_vector (3 downto 0);

— Parser to Ram
signal parser_.to. RAM_In : t_.RAM_Port_In;
signal parser_to. RAM_Out : t_RAM_Port_Out;

— Processed Ram to Message Setter
signal Proc_to_Msg_Setter_In : t_RAM_Port_In;
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signal Proc_to_Msg_Setter_Out : t_RAM_Port_Out;

—— Const Ram to Message Setter
signal const_to_Msg_Setter_In : t_ RAM_Port_In;
signal const_to_Msg_Setter_Out : t_RAM_Port_Out;

—— Data Ram to Calculation Block
signal Data_ RAM_in: t_RAM_Port_In;
signal Data_RAM_ out: t_RAM_Port_Out;

— C(Calculation Block to Processed Ram
signal Proc_ RAM_in: t_-RAM_Port_In;
signal Proc_.RAM_out: t_RAM_Port_Out;

— Slow update pulse for Message Setter
signal update_char : std_logic;

—— Char Display

type t_char_disp is record
DispCLR : std_logic;
DispClearMem : std_logic;
DispAddr : integer range 0 to 31;
DispData : STDILOGIC.VECTOR (7 downto 0);
DispDataEnable : std_logic;
UpdateDisplay : std_logic;
DispInProg : std_logic;

end record;

signal char_disp : t_char_disp;

— I12C Signals
signal q : std_logic_vector (11 downto 0);

signal err : std_logic;
signal Dout : std_logic_vector (7 downto 0);
signal clk_i2c¢ : std_-logic = '0"';

— Live data signals

signal curr_humidity : std-logic_vector (15 downto 0);
signal curr_temperature : std_logic_vector (15 downto 0);

— Set data signals

signal set_temperature : std_logic_vector (15 downto 0);
signal set_humidity : std_logic_vector (15 downto 0);
signal enable_output : std_logic;

— Time Signals

signal curr_duration : std_logic_vector (15 downto 0);
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signal curr_remaining:
signal active_stage

— Qutput control

begin

std_logic_vector (15 downto 0);
std_logic_vector (15 downto 0);

signal humidity_out std_logic;

signal temperature_out std_logic;

— Set the reset

reset <= not reset_n;

display_logic display

port map (

data => result_data ,
carry => carry ,
clk => ¢lk_100,
seg_number => display_number

)

carry <= '0';

seven_seg_driver sSegDisplay

port map (

ck => clk_100,
reset_n => reset_n ,
number => display_number ,
seg => seg,
an => an

)

— RTC

real_time_clock : RTC
port map (

Touch_pad
Port map (

control
Port map (

) .

clk = clk_i2c,
rst => reset,

SCL = JC(2),
SDA = JC(3)
)
Keypad
clk => clk_100,
Row => JB(7 downto 4),
Col => JB(3 downto 0),

DecodeOut => keypad_button ,
pressed => keypad_pressed

)

output_control

clk
rst

=> ¢lk_100,
=> reset ,
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curr_temperature => curr_temperature,
curr_humidity => curr_humidity ,
set_temperature => set_temperature ,
set_humidity => set_humidity ,

enable => enable_output ,

heat_control => temperature_out ,
humid_control => humidity_out

)

JD(6) <= not humidity_out;
JD(7) <= not temperature_out;

c_state : Proofing_State

Port map (
CLK => clk_100,
reset_.n => reset_n,
display_update_pulse => update_run_display ,
clk_1hz => real_time_clk ,
button => keypad_button,
pressed => keypad_pressed ,
curr_humidity => curr_humidity ,
curr_temperature => curr_temperature ,
Mode => current_state ,
Static_Address_Base => Static_Address_Base,
Dynamic_Address_Base => Dynamic_Address_Base,
DisplayDataRAM_In => Proc_RAM_in,
DisplayDataRAM_Out => Proc_RAM _out ,
RunDataRAM_In => Data_RAM_in,
RunDataRAM_Out => Data_RAM _out,
buzzer_enable => buzzer_enable ,
active_temp => set_temperature,
active_humid => set_humidity ,
run_enable => enable_output ,
active_time => curr_duration ,
active_time_remaining => curr_remaining,
active_stage => active_stage

)

—— Clock divider wused to choose when to show new data from the sensors
display_update : CDiv
generic map(
TC => 118)
port map(
Cin => CLK_100,
Reset = '0',
Cout => update_run_display);

— Clock divider used to generate a 1 hertz clock

real_time : CDiv
generic map(

TC => 100)
port map(

Cin => CLK_100,
Reset = '0',
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Cout => real_time_clk);

micro_proc : processing_core_wrapper
port map (
sys_clock
reset

)5

USB_Uart_rxd
USB_Uart_txd
ETH_mdio_mdc_mdc
ETH _rmii_crs_dv

ETH _rmii_rx_er

ETH _rmii_rxd

ETH _rmii_tx_en

ETH _rmii_txd
cellular_RAM _addr
cellular _ RAM _adv_ldn
cellular_.RAM _ben
cellular_ RAM_ce_n
cellular_ RAM_cre
cellular _ RAM _oen
cellular _ RAM _wait
cellular _ RAM _wen
cellular_ram_dq_io
eth_mdio_mdc_mdio_io
eth_ref_clk
iic_rtl_scl_io
iic_rtl_sda_io
curr_temperature_tri_o
curr_humid_tri_o
duration_tri_i
remaining_tri_i
gpio_stage_tri_i

RamUBn <= cellular _ RAM _ben (1) ;
RamLBn <= cellular _RAM _ben (0) ;

—— Run Ram
data_ram : RAM2K_S8

port map (

DOA => parser_.to_.RAM_Out .DO,
DOB => Data_RAM_out .DO,

DOPA => parser_-to_.RAM_Out .DOP,
DOPB => Data_RAM _out .DOP,
ADDRA => parser_to_.RAM_In .ADDR,
ADDRB => Data_RAM_in.ADDR,
CLKA => CLK_100,

CLKB => CLK_100,

DIA => parser_.to_. RAM_In.DI,
DIB => Data_RAM_.in.DI,

DIPA => parser_to_.RAM_In .DIP,
DIPB => Data_RAM_in.DIP,

ENA => parser_to_RAM _In .EN,
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clk_100,

reset ,
usb_uart_rxd ,
usb_uart_txd ,
PhyMdc,

PhyCrs,
PhyRxErr,
PhyRxd,
PhyTxEn,
PhyTxd,

MemAdr,
RamADVn,
cellular _RAM _ben ,
RamCEn,

RamCRE,

RamOEn,
RamWait ,
RamWEn,

MemDB,

PhyMdio,
PhyClk50Mhz ,
JC(2),

JC(3) ,
curr_temperature ,
curr_humidity ,
curr_duration ,
curr_remaining ,
active_stage



ENB => Data_RAM_in.EN,
SSRA => Reset ,

SSRB => Reset ,

WEA => parser_to_RAM_In .WE,
WEB => Data_RAM_in .WE

)3

— Processed Date Ram
Proc. RAM : RAM_2K 8
port map (
DOA => Proc_RAM_Out .DO,
DOB => Proc_-to_Msg_Setter_Out .DO,
DOPA => Proc_.RAM_Out .DOP,
DOPB => Proc_to_Msg_Setter_Out .DOP,
ADDRA => Proc_RAM_in .ADDR,
ADDRB => Proc_to_Msg_Setter_In.ADDR,
CLKA => CLK_100,
CLKB => CLK_100,
DIA => Proc_RAM_in.DI,
DIB => Proc_to_Msg_Setter_In.DI,
DIPA => Proc_RAM_in.DIP,
DIPB => Proc_to_Msg_Setter_In.DIP,
ENA => Proc.RAM_in.EN,
ENB => Proc_to_Msg_Setter_In.EN,
SSRA => Reset ,
SSRB => Reset ,
WEA => Proc_RAM_in .WE,
WEB => Proc_to_Msg_Setter_In .WE

E

— Constant Date Ram
Const_ RAM : Constant_Character RAM
port map (

DOA => const_to_Msg_Setter_Out .DO,
DOB => open,
DOPA => const_to_Msg_Setter_Out .DOP,
DOPB => open,
ADDRA => const_to_Msg_Setter_In .ADDR,
ADDRB => (others => '1'),
CLKA => CLK_100,
CLKB = '1',
DIA => const_to_Msg_Setter_In.DI,
DIB => (others = '1'),
DIPA => const_to_Msg_Setter_In .DIP,
DIPB => (others => '1'),
ENA => const_to_Msg_Setter_In .EN,
ENB => '0',
SSRA => Reset ,
SSRB => '0',
WFA => const_to_Msg_Setter_In .WE,
WEB => '0'
)

— Message Setter
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msg_setter : Message_Setter
port map (

CLK => CLK_100,
Update_Pulse => update_char,
Reset => Reset ,
ProcDataRAM_In => Proc_to_Msg_Setter_In ,
ProCDataRAM_Out => Proc_to_Msg_Setter_Out ,
ConstCharRAM_In => const_to_Msg_Setter_In ,
ConstCharRAM_Out => const_to_Msg_Setter_Out ,
DispCLR => char_disp .DispCLR,
DispClearMem => char_disp .DispClearMem ,
DispAddr => char_disp .DispAddr,
DispData => char_disp.DispData,
DispDataEnable => char_disp.DispDataEnable,
UpdateDisplay => char_disp.UpdateDisplay ,
DispInProg => char_disp.DispInProg,
Static_Address_Base => Static_Address_Base ,

Dynamic_Address_Base => Dynamic_Address_Base

) ;

— Communication to the CharDisplay
CDisplay : CharDisplay port map (
CLK => CLK_100,
Reset => Reset,
CLR => char_disp .DispCLR,
ClearMem => char_disp .DispClearMem ,
RST => Reset,
DAddr => char_disp .DispAddr,
Dataln => char_disp.DispData,
DatalnEnable => char_disp.DispDataEnable
UpdateDisplay => char_disp . UpdateDisplay,
DispInProg => char_disp.DispInProg,
JA => JA(3 downto 0));

— Clock divider used to get a slow clock for the Seven Segment display
divset : CDiv
generic map(

TC => 35)
port map(
Cin = CLK_100,
Reset => '0',
Cout => update_char);
generate_scl : process(q)
begin

if(q = x”1F4”) then
clk_i2¢ <= not clk_i2c;
end if;
end process generate_scl;

alert : buzzer
port map (
clk_100 => clk_100,
enable => buzzer_enable
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buzzer

);

end architecture;

= JD(3)
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A.2 Proofing State Machine

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use [EEE.NUMERICSTD.ALL:;

use [EEE.STD_LOGIC_UNSIGNED .ALL;

library work;
use work.common. all;

entity Proofing_State is

Port (

CLK, —
System clock

reset_.n : in std_logic; — Reset

display_update_pulse : in std_logic; — pulse
to update run display

clk_1hz : in std_logic; — One
hertz clock used to update the timer

button : in std_logic_vector (3 downto 0); —
Button press from keypad

pressed : in std_logic; —
Pressed from keypad

curr_humidity : in std-logic_vector (15 downto 0); —
Current humidity from the sensor

curr_temperature : in std_logic_vector (15 downto 0); —

Current temperature from the sensor
Mode : out t_proofer_state; —
Current mode of the state machine

Static_Address_Base : out integer range 0 to 2047, — Base
address for static display
Dynamic_Address_Base : out integer range 0 to 2047; —— Base

address for dynamic display

DisplayDataRAM_In : out T_RAM_Port_In; —
Display Data Ram

DisplayDataRAM_Out : in T_RAM_Port_Out; —
Display Data Ram

RunDataRAM_In : out T_RAM_Port_In; — Run
Data Ram

RunDataRAM_Out : in T_RAM_Port_Out; — Run
Data Ram

buzzer_enable : out std_logic; —

Enable the buzzer

active_time : out std_logic_vector (15 downto 0); —
Active Time

active_time_remaining : out std_logic_vector (15 downto 0); —
Remaining time for the run

active_temp : out std_logic_vector (15 downto 0); —
Active Temperature

active_humid : out std_logic_vector (15 downto 0); —
Active Humidity

active_stage : out std_-logic_vector (15 downto 0); —
Active stage

run_enable : out std_logic — Is
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the device running?
).

end Proofing_State;
architecture Behavioral of Proofing_State is

component bcd_2_bin
Port (
bed_in : in t_bcd;
bin_out : out STDILOGIC.VECTOR (15 downto 0) := (others => '0')
)

end component ;

component DoubleDabble
port (
bin_in : in std_logic_vector (15 downto 0);
bcd_out : out t_bced
)

end component ;
signal current_state : t_proofer_state := main;

—— Signals to create a single pulse when a button is first pressed.
signal previous_pressed : std_logic := '0"';
signal pulse : std_logic = '0';

— Return state for subprocess.
— Allows for ”calls” to be made in the state machine
signal return_state : t_proofer_state;

— Addresses used for accessing the display data ram and the run data ram
signal current_display_data_address : integer range 0 to 2047;

signal base_display_data_address : integer range 0 to 2047,

signal current_run_data_address : integer range 0 to 2047;

signal base_run_data_address : integer range 0 to 2047;

—— Number conversion signals
signal bcd_2_bin_becd : t_bced;
signal bcd-2_bin_bin : std_-logic_vector (15 downto 0);

signal dd_-bcd : t_bced;
signal dd_bin : std_logic_vector (15 downto 0);

signal bcd_index : integer range 0 to 5;
signal bin_index : integer range 0 to 1;

— Signals for run state

signal run_sub_counter : integer range 0 to 31;

signal run_time : std_logic_vector (15 downto 0);

signal run_time_remaining : std_logic_vector (15 downto 0);
signal run_temp : std_logic_vector (15 downto 0);

signal run_humid : std_logic_vector (15 downto 0);

signal run_leading : std_logic;

signal run_stage : std_logic_vector (15 downto 0);
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begin

— Component used to convert bcd a number into a binary number
convert_bcd : becd_2_bin

Port map(

dd

bed_in => bed_2_bin_bed ,
bin_out => bcd_2_bin_bin

);

DoubleDabble
port map (
bin_in => dd_bin,
bcd_out => dd_bed
)

— Send out the current mode
Mode <= current_state;

— Send out the current run stage
active_stage <= run_stage;

— FEnable the buzzer when the state is alert
buzzer_enable <= 'l' when current_state = alert else '0';

— Main state machine
state : process (clk, reset_n)

— Temporary variable to aid in conversion

variable tmp : std_logic_vector (7 downto 0);

—— Counter for the timer

variable minute_count : integer range 0 to 255 := O0;

begin

— Reset state for the state machine

if (reset.n = '0') then
current_state <= main;
DisplayDataRAM _In.EN <= '0"';
RunDataRAM In.EN <= '0';
current_run_data_address <= 0;
base_run_data_address <= 0;
run_enable <= '0';

— On the clock preforms actions.

elsif(rising_edge (clk)) then
case (current_state) is
— Main state displays the welcome page
when main =>
current_run_data_address <= 0;
base_run_data_address <= 0;
Static_Address_Base <= Const_RAM.main;
Dynamic_Address_Base <= Proc_ RAM.main;

if pulse = 'l' then
current_state <= enter_time;
end if;

— Setup the memory addressed for entering time then run sub—
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routine

when enter_time =>
Static_Address_Base <= Const_ RAM.enter_time;
Dynamic_Address_Base <= Proc RAM.enter_time;
return_state <= enter_temp;
current_state <= h_data_add_subprocess_setup;
base_display_data_address <= ProccRAM.enter_time;

—— Setup the memory addressed for entering temp then run sub—
routine

when enter_temp =>
Static_Address_Base <= Const_RAM.enter_temp;
Dynamic_Address_Base <= Proc. RAM.enter_temp ;
return_state <= enter_humid;
current_state <= h_data_add_subprocess_setup;
base_display_data_address <= Proc. RAM.enter_temp;

— Setup the memory addressed for entering humidity then run
sub—routine

when enter_humid =>
Static_Address_Base <= Const_RAM.enter_humid;
Dynamic_Address_Base <= Proc RAM.enter_humid;
return_state <= next_point;
current_state <= h_data_add_subprocess_setup;
base_display_data_address <= Proc. RAM.enter_humid;

—— Prompt the wuser to see if there is another step in the
proofing run
when next_point =>
Static_Address_Base <= Const_ RAM.next_point;
Dynamic_Address_Base <= Proc. RAM.next_point ;
if pulse = 'l' then
case (button) is
— If 'a' is pressed then add another data point
when x”a” =>
current_state <= h_display_ram_clear_setup;
— If 'b' is pressed them move on to the run state
when x”b” =>
current_state <= run_setup;
when others =>
null;
end case;
end if;

— Setup wvalues for reading run

when run_setup =>
Static_Address_Base <= Const_ RAM.run;
Dynamic_Address_Base <= Proc. RAM.run;
base_display_data_address <= Proc. RAM.run;
base_run_data_address <= 0;
run_sub_counter <= 0;
current_state <= run_read_time;
run_stage <= x”70001”;
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— Read in the active time
when run_read_time =>

reset the minute counter

minute_count := 0;
run_sub_counter <= run_sub_counter + 1;
case (run_sub_counter) is

when 0 =>
current_run_data_address <= base_run_data_address;
RunDataRAM_In.EN <= '1';
RunDataRAM_In WE <= '0';
RunDataRAM In.ADDR <= std_logic_vector (to_unsigned
(base_run_data_address ,11));
when 2 =>
run_time <= x”700” & RunDataRAM_Out.DO;
current_run_data_address <=
current_run_data_address + 1;
RunDataRAM_In.ADDR <= std_logic_vector (to_unsigned
(current.-run_data_address + 1,11));

when 4 =>
run_time <= RunDataRAM_Out.DO & run_time (7 downto
0);

current_run_data_address <=
current_run_data_address + 1;
RunDataRAM_In.ADDR <= std_logic_vector (to_unsigned
(current_run_data_address + 1,11));
when 5 =>
if (run_time = x”70000”) then
current_state <= alert;
run_stage <= x”0000”;
end if;
when 6 =>
current_state <= run_read_temp;
run_sub_counter <= 0;
run_time_remaining <= run-time;
when others =>
null;

end case;

— Read in the active temperature

when run.read_temp =>
run_sub_counter <= run_sub_counter + 1;
case (run_sub_counter) is

when 0 =>
run_temp <= x”00” & RunDataRAM_Out.DO;
current_run_data_address <=
current_run_data_address + 1;
RunDataRAM_In.ADDR <= std_logic_vector (to_unsigned
(current_run_data_address + 1,11));

when 2 =>
run_temp <= RunDataRAM_Out.DO & run_temp (7 downto
0);

current_run_data_address <=
current_run_data_address + 1;
RunDataRAM In.ADDR <= std_logic_vector (to_unsigned
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(current-run_data_address + 1,11));
when 3 =>
current_state <= run_read_humid;
run_sub_counter <= 0;
when others =>
null;
end case;

—— Read in the active humidity
when run_read_humid =>
run_sub_counter <= run_sub_counter + 1;
case (run_sub_counter) is
when 0 =>
run_humid <= x”00” & RunDataRAM_Out.DO;
current_run_data_address <=
current_run_data_address + 1;
RunDataRAM_In.ADDR <= std_logic_vector (to_unsigned
(current.-run_data_address + 1,11));

when 2 =>
run_humid <= RunDataRAM_Out.DO & run_humid (7
downto 0);

current_run_data_address <=
current_run_data_address + 1;
RunDataRAM_In.ADDR <= std_logic_vector (to_unsigned
(current_run_data_address + 1,11));
when 3 =>
current_state <= run;
RunDataRAM_In.EN <= '0';
run_sub_counter <= 0;
base_run_data_address <= current_run_data_address;
when others =>
null;
end case;

— Run state is used to while the proofing run is active
when run =>
—— Update the minute counter
if (clk_lhz = '1'") then
minute_count := minute_count + 1;
end if;

—— Update the time remaining
if (minute_count >= 60) then

minute_count := 0;
run_time_remaining <= run_time_remaining — 1;
end if;

—— Update the Outputs

active_time <= run_time;

active_temp <= run_temp;

active_humid <= run_humid;
active_time_remaining <= run_time_remaining;
run_enable <= '1"';
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— Update the current wvalues displayed on update pulse

if (display_-update_pulse = '1') then
current_state <= run_update_display;
end if;

— When the time is over sound the alarm

if (run_time_remaining = x”0000”) then
current_state <= run_read_time;
run_enable <= '0"';
run_stage <= run._stage + 1;

end if;

— End run early if E is pressed.
if pulse = 'l' then
case (button) is
— If 'e' is pressed then end run
when x”e” =>
current_state <= h_both_ram_clear_setup;
run_enable <= '0"';
run_stage <= x”70000”;
when others =>
null;
end case;
end if;

— Update the character display while in the run step
when run_update_display =>

run_sub_counter <= run_sub_counter + 1;
case (run_sub_counter) is
when 0 =>
current_display_data_address <=
base_display_data_address;

— Write temperature
when 1 =>
dd_bin <= curr_temperature;
bcd_index <= 4;
run_leading <= '1';
— Write 'T’
when 2 =>
DisplayDataRAM_In .EN <= '1"';
DisplayDataRAM_In WE <= '1';
current_display_data_address <=
current_display_data_address+1;
DisplayDataRAM_In .ADDR <= std_logic_vector (
to_unsigned (current_display_data_address ,11));
DisplayDataRAM_In.DI <= x”54";
— Write '/
when 3 =>
current_display_data_address <=
current_display_data_address+1;
DisplayDataRAM_In.ADDR <= std_logic_vector (
to_unsigned (current_display_data_address ,11));
DisplayDataRAM _In.DI <= x”3A”;
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when 4 =>
bcd_index <= bcd_index — 1;
current_display_data_address <=
current_display_data_address+1;
DisplayDataRAM _In .ADDR <= std_logic_vector (
to_unsigned (current_display_data_address ,11));
if (run_leading = 'l' and dd_bcd(bcd_index) = x70”
) then
DisplayDataRAM _In.DI <= x720";
current_display_data_address <=
current_display_data_address;
else
run_leading <= '0';
DisplayDataRAM_In.DI <= dd_bed (bed-index) + x”
30”;
end if;
if (bcd-index /= 0) then
run_sub_counter <= run_sub_counter;
end if;

— Write space
when 5 =>
current_display_data_address <=
current_display_data_address+1;
DisplayDataRAM_In .ADDR <= std_logic_vector (
to_unsigned (current_display_data_address ,11));
DisplayDataRAM _In.DI <= x”720”;
if (current_display_-data_address /=
base_display_data_address + 8) then
run_sub_counter <= 5;
end if;
when 6 =>
DisplayDataRAM _In.EN <= '0';
DisplayDataRAM_In . WE <= '0';

— Write Humidity
when 7 =>
dd_bin <= curr_humidity;
bcd.index <= 4;
run_leading <= '1';
_ /H/
when 8 =>
DisplayDataRAM_In.EN <= '1';
DisplayDataRAM_In WE <= '1';
current_display_data_address <=
current_display_data_address+1;
DisplayDataRAM_In.ADDR <= std_logic_vector (
to_unsigned (current_display_data_address ,11));
DisplayDataRAM _In.DI <= x”748”;
!

!

when 9 =>
current_display_data_address <=
current_display_data_address+1;
DisplayDataRAM _In.ADDR <= std_logic_vector (
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to_unsigned (current_display_data_address ,11));
DisplayDataRAM_In.DI <= x”3A”;
when 10 =>
bcd_index <= bcd_index — 1;
current_display_data_address <=
current_display_data_address+1;
DisplayDataRAM_In .ADDR <= std_logic_vector (
to_unsigned (current_display_data_address ,11));
if (run_leading = 'l' and dd_bed(bcd_index) = x70”7
) then
DisplayDataRAM _In.DI <= x”207;
current_display_-data_address <=
current_display_data_address;
else
run_leading <= '0';
DisplayDataRAM_In.DI <= dd_bed(bed_index) + x”
307 ;
end if;
if (becd_index /= 0) then
run_sub_counter <= run_sub_counter;
end if;

— Write space
when 11 =>
current_display_data_address <=
current_display_data_address+1;
DisplayDataRAM_In.ADDR <= std_logic_vector (
to_unsigned (current_display_-data_address ,11));
DisplayDataRAM_In.DI <= x”7207;
if (current_display_data_address /=
base_display_data_address + 15) then
run_sub_counter <= 11;
end if;
when 12 =>
DisplayDataRAM_In.EN <= '0';
DisplayDataRAM_In . WE <= '0';

— Write stage

when 13 =>
run_leading <= '1';
dd_bin <= run_stage;
bcd_index <= 4;

— Write 'S’
when 14 =>
DisplayDataRAM_In.EN <= '1"';
DisplayDataRAM_In WE <= '1"';
current_display_data_address <=
current_display_data_address+1;
DisplayDataRAM_In .ADDR <= std_logic_-vector (
to_unsigned (current_display_data_address ,11));
DisplayDataRAM_In.DI <= x”53";
— Write ':'
when 15 =>
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current_display_-data_address <=
current_display_data_address+1;
DisplayDataRAM_In .ADDR <= std_logic_vector (
to_unsigned (current_display_data_address ,11));
DisplayDataRAM _In.DI <= x”3A”;
when 16 =>
bcd.index <= bcd_-index — 1;
current_display_data_address <=
current_display_data_address+1;
DisplayDataRAM _In .ADDR <= std_logic_vector (
to_unsigned (current_display_data_address ,11));
if (run_leading = 'l' and dd_bcd(bcd_index) = x70”
) then
DisplayDataRAM _In.DI <= x720";
current_display_data_address <=
current_display_data_address;
else
run_leading <= '0';
DisplayDataRAM_In.DI <= dd_bed(bed_index) + x”
30”;
end if;
if (bcd_-index /= 0) then
run_sub_counter <= run_sub_counter;
end if;

— Write space
when 17 =>
current_display_data_address <=
current_display_data_address+1;
DisplayDataRAM_In .ADDR <= std_logic_vector (
to_unsigned (current_display_data_address ,11));
DisplayDataRAM _In.DI <= x”20”;
if (current_display_data_address /=
base_display_data_address + (8+16)) then
run_sub_counter <= 17;
end if;
when 18 =>
DisplayDataRAM_In.EN <= '0';
DisplayDataRAM_In WE <= '0';
run_leading <= '1';

— Write time remaining
when 19 =>
dd_bin <= run_time_remaining;
bcd_index <= 4;
o /R/
when 20 =>
DisplayDataRAM_In.EN <= '1';
DisplayDataRAM_In WE <= '1';
current_display_data_address <=
current_display_data_address+1;
DisplayDataRAM_In.ADDR <= std_logic_vector (
to_unsigned (current_display_data_address ,11));
DisplayDataRAM _In.DI <= x" 52" ;
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end

[
when 21 =>
current_display_data_address <=
current_display_data_address+1;
DisplayDataRAM _In .ADDR <= std_logic_vector (
to_unsigned (current_display_data_address ,11));
DisplayDataRAM_In.DI <= x”3A”;
when 22 =>
bcd_index <= bcd_index — 1;
current_display_data_address <=
current_display_data_address+1;
DisplayDataRAM_In .ADDR <= std_logic_-vector (
to_unsigned (current_display_-data_address ,11));
if (run_leading = 'l' and dd_bed(bced_index) = x70”7
) then
DisplayDataRAM _In.DI <= x”207;
current_display_-data_address <=
current_display_data_address;
else
run_leading <= '0';
DisplayDataRAM_In.DI <= dd_bcd (bed-index) + x”
307 ;
end if;
if (bed_-index /= 0) then
run_sub_counter <= run_sub_counter;
end if;
— Write space
when 23 =>
current_display_data_address <=
current_display_data_address+1;
DisplayDataRAM _In.ADDR <= std_logic_vector (
to_unsigned (current_display_data_address ,11));
DisplayDataRAM _In.DI <= x”720”;
if (current_display_-data_address /=
base_display_data_address + 32) then
run_sub_counter <= 23;
end if;
—— Done
— Return to run
when 24 =>
DisplayDataRAM_In.EN <= '0';
DisplayDataRAM_In . WE <= '0"';
current_state <= run;
run_sub_counter <= 0;

when others =>
null;
case;

— Sound an alarm for the bread being ready
when alert =>
Static_Address_Base <= Const_ RAM. alert ;
Dynamic_Address_Base <= Proc. RAM. alert ;
if pulse = 'l' then

57



current_state <= h_both_ram_clear_setup;
end if;

when h_data_add_subprocess_setup =>
current_display_data_address <= base_display_data_address;
current_state <= h_data_add_subprocess;

— Subroutine used to copy keypresses into the character
memory

when h_data_add_subprocess =>
DisplayDataRAM _In.EN <= '0';

— process keypad entry on pulse
if pulse = 'l' then
case (button) is
when x”70”7 =>
if (current_display_data_address <
base_display_data_address + 5) then
DisplayDataRAM _In.EN <= '1"';
DisplayDataRAM _In.DI <= x730";
DisplayDataRAM _In WE <= '1"';
DisplayDataRAM _In .ADDR <= std_logic_vector
(to_unsigned (
current_display_data_address, 11));
current_display_data_address <=
current_display_data_address + 1;
end if;
when x”1”7 =>
if (current_display_data_address <
base_display_data_address + 5) then
DisplayDataRAM _In.EN <= '1"';
DisplayDataRAM _In.DI <= x”31”7;
DisplayDataRAM _In WE <= '1"';
DisplayDataRAM _In .ADDR <= std_logic_vector
(to_unsigned (
current_display_data_address, 11));
current_display_data_address <=
current_display_data_address + 1;
end if;
when x”72” =>
if (current_display_data_address <
base_display_data_address + 5) then
DisplayDataRAM _In.EN <= '1"';
DisplayDataRAM _In.DI <= x”32”;
DisplayDataRAM_In WE <= '1"';
DisplayDataRAM _In .ADDR <= std_logic_vector
(to_unsigned (
current_display_data_address, 11));
current_display_data_address <=
current_display_data_address + 1;
end if;
when x”737 =>
if (current_display_data_address <
base_display_data_address + 5) then
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DisplayDataRAM_In .EN <= '1"';
DisplayDataRAM _In.DI <= x”33”;
DisplayDataRAM_In WE <= '1"';
DisplayDataRAM _In .ADDR <= std_logic_vector
(to_unsigned (
current_display_data_address, 11));
current_display_-data_address <=
current_display_data_address + 1;
end if;
when x”74”7 =>
if (current_display_data_address <
base_display_data_address + 5) then
DisplayDataRAM_In .EN <= '1';
DisplayDataRAM _In.DI <= x734";
DisplayDataRAM _In WE <= '1"';
DisplayDataRAM _In .ADDR <= std_logic_vector
(to_unsigned (
current_display_data_address, 11));
current_display_data_address <=
current_display_data_address + 1;
end if;
when x”5” =>
if (current_display_data_address <
base_display_data_address + 5) then
DisplayDataRAM _In.EN <= '1"';
DisplayDataRAM _In.DI <= x”735";
DisplayDataRAM _In WE <= '1"';
DisplayDataRAM _In .ADDR <= std_logic_vector
(to_unsigned (
current_display_data_address, 11));
current_display_data_address <=
current_display_data_address + 1;
end if;
when x”76” =>
if (current_display_data_address <
base_display_data_address + 5) then
DisplayDataRAM _In.EN <= '1"';
DisplayDataRAM _In.DI <= x”36";
DisplayDataRAM_In WE <= '1"';
DisplayDataRAM _In .ADDR <= std_logic_vector
(to_unsigned (
current_display_data_address, 11));
current_display_data_address <=
current_display_data_address + 1;
end if;
when x777 =>
if (current_display_data_address <
base_display_data_address + 5) then
DisplayDataRAM _In .EN <= '1"';
DisplayDataRAM _In.DI <= x”37”;
DisplayDataRAM_In WE <= '1"';
DisplayDataRAM _In .ADDR <= std_logic_vector
(to_unsigned (
current_display_data_address, 11));
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current_display_-data_address <=
current_display_data_address + 1;
end if;
when x78”7 =>
if (current_display_data_address <
base_display_data_address + 5) then
DisplayDataRAM_In .EN <= '1"';
DisplayDataRAM _In.DI <= x”38”;
DisplayDataRAM_In WE <= '1"';
DisplayDataRAM _In .ADDR <= std_logic_vector
(to_unsigned (
current_display_data_address, 11));
current_display_data_address <=
current_display_data_address + 1;
end if;
when x”79”7 =>
if (current_display_data_address <
base_display_data_address + 5) then
DisplayDataRAM _In.EN <= '1"';
DisplayDataRAM _In.DI <= x739";
DisplayDataRAM _In WE <= '1"';
DisplayDataRAM _In .ADDR <= std_logic_vector
(to_unsigned (
current_display_data_address, 11));
current_display_data_address <=
current_display_data_address + 1;
end if;
— Accept the number
when x”7a” =>
current_state <=
h_run_data_add_subprocess_setup;
— Delete one character
when x”b” =>
if (current_display_data_address >
base_display_data_address) then
current_display_data_address <=
current_display_data_address — 1;
current_state <=
h_data_add_subprocess_clear;
end if;
when x7c¢” =>
null;
when x”d” =>
null;
when x”7e” =>
null;
when x”7 {7 =>
null;
when others =>
null;

end case;
end if;

— Setup for h_run_data_add_subprocess
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when h_run_data_add_subprocess_setup =>
— read from the display ram into dcd
DisplayDataRAM _In .EN <= '1"';
DisplayDataRAM _In . WE <= '0';
DisplayDataRAM _In .ADDR <= std_logic_vector (to_unsigned (

base_display_data_address, 11));

current_display_-data_address <= base_display_-data_address;
bcd_index <= 5;
bed_2_bin_bcd <= (others => (others => '0'));
current_state <= h_run_data_add_subprocess_wait;

—— Read the numbers from the character display, and store it
as a binary coded decimal
when h_run_data_add_subprocess =>
— read from the display ram into dcd
DisplayDataRAM _In .ADDR <= std_logic_vector (to_unsigned (
current_display_data_address+1, 11));
current_display_-data_address <=
current_display_data_address + 1;
bced_index <= bcd_index — 1;

—— Check for empty char and end of number
if (DisplayDataRAM_Out.DO = x”00” or bcd_index = 0) then
current_state <= h_run_data_add_subprocess_bcd2bin;
else
tmp := DisplayDataRAM_Out.DO — x730";
for i in 4 downto 1 loop
bed_2_bin_bed (i) <= bed_2_bin_bed (i—1);
end loop;
bed-2_bin_bcd (0) <= tmp(3 downto 0);

current_state <= h_run_data_add_subprocess_wait;
end if;

— Fxtra cycle needed to give the display ram time to output
the number

when h_run_data_add_subprocess_wait =>
current_state <= h_run_data_add_subprocess;

— Cycle for the bcd2bin to convert

when h_run_data_add_subprocess_bcd2bin =>
current_state <= h_run_data_add_subprocess_write;
current_run_data_address <= base_run_data_address;

base_run_data_address <= base_run_data_address + 2;
bin_index <= 0;

— Write the binary coded decimal to the run ram
when h_run_data_add_subprocess_write =>
if bin_index = 1 then
current_state <= h_run_data_add_subprocess_post;
RunDataRAM_In WE <= '0';
RunDataRAM_In.EN <= '0';
else

current_run_data_address <= current_run_data_address -+
1.

)
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end if;
case (bin_index) is
when 0 => RunDataRAM_In.DI <= bcd_-2_bin_bin (7 downto
0);
when 1 => RunDataRAM_In.DI <= bcd_-2_bin_bin (15 downto
8):
when others => RunDataRAM_In.DI <= x”00”;
end case;
bin_index <= bin_index + 1;
RunDataRAM_In.EN <= '1';
RunDataRAM _In WE <= '1';
RunDataRAM_In .ADDR <= std_logic_vector (to_unsigned (
current_run_data_address, 11));

when h_run_data_add_subprocess_post =>
current_state <= return_state;

—— State wused to clear a char from the display memory
when h_data_add_subprocess_clear =>
DisplayDataRAM _In .EN <= '1"';
DisplayDataRAM _In.DI <= x”00”;
DisplayDataRAM _In WE <= '1';
DisplayDataRAM_In .ADDR <= std_logic_-vector (to_unsigned (
current_display_data_address, 11));
current_state <= h_data_add_subprocess;

when h_display_ram_clear_setup =>
current_display_-data_address <= 0;
current_state <= h_display_ram_clear;

— Reset the display RAM to all zeros
when h_display_ram_clear =>
DisplayDataRAM _In.EN <= '1';
DisplayDataRAM_In.DI <= x”00”;
DisplayDataRAM _In WE <= '1"';
DisplayDataRAM_In .ADDR <= std_logic_vector (to_unsigned (
current_display_data_address, 11));
current_display_data_address <=
current_display_data_address + 1;
if (current_display_-data_address = 2047) then

current_state <= h_display_ram_clear_post;
end if;

when h_display_ram_clear_post =>
DisplayDataRAM_In.EN <= '0';

current_state <= enter_time;

when h_both_ram_clear_setup =>
current_display_data_address <= 0;
current_state <= h_both_ram_clear;

— Reset both rams to all zeros

when h_both_ram_clear =>
DisplayDataRAM _In.EN <= '1';
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DisplayDataRAM_In.DI <= x”00”;

DisplayDataRAM_In WE <= '1';

DisplayDataRAM_In .ADDR <= std_logic_vector (to_unsigned (
current_display_data_address, 11));

RunDataRAM_In.EN <= '1';

RunDataRAM_In.DI <= x”007 ;

RunDataRAM_In WE <= '1';

RunDataRAM_In .ADDR <= std_logic_vector (to_unsigned (
current_display_data_address, 11));

current_display_data_address <=
current_display_data_address + 1;

if (current_display_-data_address = 2047) then
current_state <= h_both_ram_clear_post;

end if;

when h_both_ram_clear_post =>

DisplayDataRAM_In.EN <= '0';
RunDataRAM_In.EN <= '0';

current_state <= main;

when others =>

current_state <= main;

end case;

end if;
end process;

—— Set the comnstant bits of the RAM

— This design does not use parity bits
DisplayDataRAM_In.DIP <= (others = '0');
RunDataRAM_In.DIP <= (others => '0');

— Pulser logic
pressed down

is used to generate a pulse when the keypad is first

pulser : process (clk) begin
if (rising_edge(clk)) then
if (previous_pressed = '0' and pressed = 'l') then

pulse <= '1"';

else

pulse <= '0';

end if;

previous_pressed <= pressed;

end if;
end process;

end Behavioral;
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A.3 Output Control Module

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use ieee.numeric_std.all;

use [EEE.STD_LOGIC_UNSIGNED .ALL;

entity output_control is

Port (

clk : in STD_LOGIC;

rst : in std_-logic;

curr_temperature : in STDLOGIC.VECTOR (15 downto 0);
curr_humidity : in STDLOGIC.VECTOR (15 downto 0);
set_temperature : in std_logic_vector (15 downto 0);
set_humidity : in std_-logic_vector (15 downto 0);
enable : in std_logic;

heat_control : out STD_LOGIC;

humid_control : out STD_LOGIC) ;

end output_control;

architecture Behavioral of output_control is

component CDiv

GENERIC (
TC : integer := 18 —Time Constant. 15 for “1khz —
100000000/(TC"4) Hz
);
PORT (
Cin : IN STD_LOGIC;
Reset : IN STD_LOGIC;
Cout : OUT STD.LOGIC) ;

end component ;

signal humid_fast : std_logic;
signal humid_slow : std_logic;
signal temp_fast : std_logic;
signal temp_slow : std_logic;
signal average_sum_temp : integer range 0 to 50 := 25;
signal average_sum_humid : integer range 0 to 50 := 25;
constant average_sum_threshold : integer range 0 to 50 := 25;
begin
tslow CDiv
generic map(
TC => 196)
port map(
Cin => clk,

tfast

Reset = '0',
Cout => temp_slow);

CDiv

generic map(

TC => 110)

port map(
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Cin => clk,
Reset => '0',
Cout => temp_fast);

hslow : CDiv
generic map(

TC => 100)
port map(
Cin = clk,

Reset = '0',
Cout => humid_slow) ;

hfast : CDiv
generic map(

TC => 56)
port map(
Cin => clk,

Reset => '0',
Cout => humid_fast);

set_average : process(clk, rst)
begin
if (rising_edge(clk)) then
if(rst = '1') then

average_sum_temp <= 25;
average_sum_humid <= 25;

else
if(temp_fast = '1') then
if(to_-integer (unsigned(set_temperature)) <= to_integer (
unsigned (curr_temperature))) then
if (average_sum_temp > 0) then
average_sum_temp <= average_sum_temp — 1;
end if;
elsif (to_integer (unsigned (set_temperature)) > to_integer (
unsigned (curr_temperature))) then
if (average_sum_temp < 50) then
average_sum_temp <= average_sum_temp + 1;
end if;
end if;
end if;
if (humid_fast = '1') then
if(to_integer (unsigned (set_humidity)) <= to_integer (
unsigned (curr_humidity))) then
if (average_sum_humid > 0) then
average_sum_humid <= average_sum_humid — 1;
end if;
elsif(to_integer (unsigned (set_humidity)) > to_integer (
unsigned (curr_humidity))) then
if (average_sum_humid < 50) then
average_sum_humid <= average_sum_humid + 1;
end if;
end if;
end if;
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end if;
end if;
end process;

set_output : process(clk, rst, enable)
begin
if (rising_edge(clk)) then
if((rst = '1'") or (enable = '0')) then
heat_control <= '0';
humid_control <= '0';
elsif (enable = '1') then
if (temp_slow = '1") then
if (average_sum_temp > average_sum_threshold) then
heat_control <= '1"';
elsif (average_sum_temp <= average_sum_threshold) then
heat_control <= '0"';
end if;
end if;
if (humid_slow = '1') then
if (average_sum_humid > average_sum_threshold) then
humid_control <= '1"';
elsif (average_sum_humid <= average_sum_threshold) then
humid_control <= '0"';
end if;
end if;
end if;
end if;

end process;

end Behavioral;
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Appendix B Testbench VHDL Code

B.1 Proofing State Machine Test Bench

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use [EEE.NUMERICSTD.ALL;

use [EEE.STD_LOGIC_UNSIGNED .ALL;

library work;
use work.common. all;

—— Uncomment the following library declaration if wusing
— arithmetic functions with Signed or Unsigned wvalues
—use IEEE.NUMERIC.STD.ALL;

— Uncomment the following library declaration if instantiating
— any Xilinz leaf cells in this code.

—library UNISIM;

—use UNISIM. VComponents. all ;

entity Proofing_State_t is
—  Port ( );
end Proofing_State_t;

architecture Behavioral of Proofing_State_t is
component Proofing_State

Port (

CLK, — System
clock

reset_n : in std_logic; — Reset

display_update_pulse : in std_logic; — pulse to
update run display

clk_1hz : in std_logic; —— One hertz
clock used to update the timer

button : in std_logic_vector (3 downto 0); — Button
press from keypad

pressed : in std_logic; —— Pressed
from keypad

curr_humidity : in std_logic_vector (15 downto 0); — Current
humidity from the sensor

curr_temperature : in std_logic_vector (15 downto 0); — Current
temperature from the sensor

Mode : out t_proofer_state; — Current
mode of the state machine

Static_Address_Base : out integer range 0 to 2047, — Base
address for static display

Dynamic_Address_Base : out integer range 0 to 2047; —— Base
address for dynamic display

DisplayDataRAM_In : out T_RAM_Port_In; — Display
Data Ram

DisplayDataRAM_Out : in T_RAM_Port_Out; — Display
Data Ram
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);

RunDataRAM_In : out T_RAM_Port_In; — Run Data
Ram

RunDataRAM_Out : in T_RAM_Port_Out; —— Run Data
Ram

buzzer_enable : out std_logic; — FEnable the
buzzer

active_time : out std_logic_vector (15 downto 0); — Active Time

active_time_remaining : out std_logic_vector (15 downto 0); —
Remaining time for the run

active_temp : out std_logic_vector (15 downto 0); — Active
Temperature

active_humid : out std_-logic_vector (15 downto 0); — Active
Humidity

active_stage : out std_logic_vector (15 downto 0); — Active
stage

run_enable : out std_logic — Is the

device running?

end component ;

Display Data

Data Ram

— Inputs
signal reset_n : std_logic := '1';
signal button : std_logic_vector (3 downto 0) := ”0000”;
signal pressed : std_logic := '0';
signal DisplayDataRAM_Out : T_RAM_Port_Out; —
Ram
signal RunDataRAM_Out : T_RAM_Port_Out; — Run
signal curr_humidity : std-logic_vector (15 downto 0);
signal curr_temperature : std_-logic_vector (15 downto 0);
signal display_update_pulse : std_logic := '0';
signal clk_1hz : std_logic = '0"';
— Outputs
signal Mode : t_proofer_state;
signal Static_Address_Base : integer range 0 to 2047;
signal Dynamic_Address_Base : integer range 0 to 2047;
signal DisplayDataRAM_In : T_RAM_Port_In;
signal RunDataRAM_In : T_RAM_Port_In;
signal active_time : std_logic_.vector (15 downto 0);
signal active_time_remaining : std_logic_vector (15 downto 0);
signal active_temp : std_logic_vector (15 downto 0);
signal active_humid : std_logic_vector (15 downto 0);
signal active_stage : std_logic_vector (15 downto 0);
signal buzzer_enable : std_logic;
signal run_enable : std_logic;
— Clock
signal clk_100 : std_logic;
constant clk_period : time 10 ns;
begin

curr_humidity <= x”70053”;
curr_temperature <= x”0021"7;
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clock : process
begin
clk_ 100 <= '0';
wait for clk_period/2;
clk 100 <= '1"';
wait for clk_period/2;
end process;

ram : process(clk_100)
begin
if (rising_edge(clk_100))then
case (DisplayDataRAM_In.Addr) is
when std_logic_vector (to_unsigned (16#40+4,
DisplayDataRAM_Out .DO <= x”7367 ;
when std_logic_vector (to_unsigned (164414,
DisplayDataRAM_Out .DO <= x”357;
when std_logic_vector (to_unsigned (164424,
DisplayDataRAM_Out .DO <= x”735” ;
when std_logic_vector (to_unsigned (16#43+#,
DisplayDataRAM_Out .DO <= x” 337 ;
when std_logic_vector (to_unsigned (164444,
DisplayDataRAM_Out .DO <= x”7 357 ;
when others =>
DisplayDataRAM_Out .DO <= x”00” ;
end case;
end if;
end process;

RunDataRAM_Out.DO <= x” 017 ;

test : process
begin
— Reset board
reset_.n <= '0';
wait for clk_period;
reset_.n <= '1";
wait for 10xclk_period;

— Press key

button <= x"17;

pressed <= '1"';

wait for clk_period;
pressed <= '0"';

wait for 10xclk_period;

—— Press 1 for time
button <= x”17;

pressed <= '1"';

wait for clk_period;
pressed <= '0';

wait for 10xclk_period;

— Press 5 for time
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button <= x”5"”;

pressed <= '1"';

wait for clk_period;
pressed <= '0';

wait for 10xclk_period;

— Press 0 for time
button <= x70”;

pressed <= '1"';

wait for clk_period;
pressed <= '0"';

wait for 10xclk_period;

— Press A for time
button <= x”a”;

pressed <= '1"';

wait for clk_period;
pressed <= '0"';

wait for 40xclk_period;

— Press 2 for temp
button <= x”27;

pressed <= '1"';

wait for clk_period;
pressed <= '0';

wait for 10xclk_period;

—— Press A for time
button <= x”7a”;

pressed <= '1"';

wait for clk_period;
pressed <= '0"';

wait for 40xclk_period;

—— Press 8 for humid
button <= x”3”;

pressed <= '1"';

wait for clk_period;
pressed <= '0"';

wait for 10xclk_period;

— Press A for humid
button <= x”a”;

pressed <= '1"';

wait for clk_period;
pressed <= '0"';

wait for 40xclk_period;

—— Press B for stop adding
button <= x”b”;

pressed <= '1"';

wait for clk_period;
pressed <= '0';

wait for 40xclk_period;
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— Signal Display Pulse

);

end Behavioral;

display_update_pulse <= '1"';
wait for clk_period;
display_update_pulse <= '0';
wait for 60xclk_period;
— 1 Hz Pulse
clk_1hz <= '1"';
wait for clk_period;
clk_1hz <= '0"';
wait for 40xclk_period;
wait ;
end process;
UUT : Proofing_State
Port map (
CLK => CLK_100,
reset_n => reset_n ,
display_update_pulse => display_update_pulse,
clk_1hz => clk_1hz,
button => button,
pressed => pressed ,
curr_humidity => curr_humidity ,
curr_temperature => curr_temperature ,
Mode => Mode,
Static_Address_Base => Static_Address_Base ,
Dynamic_Address_Base => Dynamic_Address_Base,
DisplayDataRAM _In => DisplayDataRAM _In ,
DisplayDataRAM_Out => DisplayDataRAM _Out
RunDataRAM _In => RunDataRAM _In,
RunDataRAM_Out => RunDataRAM _Out,
buzzer_enable => buzzer_enable ,
active_time => active_time ,
active_time_remaining => active_time_remaining ,
active_temp => active_temp ,
active_humid => active_humid ,
active_stage => active_stage ,
run_enable => run_enable
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B.2 Output Control Module

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.numeric_std.all;

use [EEE.STD_LOGIC_UNSIGNED .ALL;

entity output_control_tb is
— Port ( );
end output_control_tb;

architecture tbench of output_control_tb is

signal clk : std_logic;
signal rst : std_logic;

signal current_temperature : std_logic_vector (15 downto 0);

signal current_humidity : std_logic_vector (15 downto 0);

signal set_temperature_threshold : std_logic_vector (15 downto 0)
00000000010101007 ; —84+F

signal set_humidity_threshold : std_logic_-vector (15 downto 0)
0000000000111000” ; — 56%

signal enable_output : std_logic := '1"';

signal heat_control_out : std_logic;

signal humidity_control_out : std_logic;

component output_control is
Port (
clk : in STD_LOGIC;
rst : in std_logic;

curr_temperature : in STDLOGIC.VECTOR (15 downto 0);

curr_humidity : in STDLOGIC.VECTOR (15 downto 0);
set_temperature : in std_logic_vector (15 downto 0);
set_humidity : in std_logic_vector (15 downto 0);
enable : in std_logic;
heat_control : out STD_LOGIC;
humid_control : out STD_LOGIC

)

end component ;

— Clock period declared and defined as a constant
constant clk_period : time := 10 ns;

begin

UUT : output_control

Port map (
clk = clk,
rst = rst,
curr_temperature => current_temperature ,
curr_humidity => current_humidity ,
set_temperature => set_temperature_threshold ,
set_humidity => set_humidity_-threshold ,
enable => enable_output ,
heat_control => heat_control_out ,
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humid_control => humidity_control_out

);

— clock process definition with 50% duty cycle

process
begin
clk <= '0"';
wait for clk_period /2;
clk <= '1"';

wait for clk_period/2;
end process;

— stimulus process
process
begin
rst <= '0';
wait for clk_period;
rst <= '1';
wait for clk_period;
rst <= '0"';
current_temperature <= ”70000000001000110”; — 70xF
current_humidity <= ”70000000000101101”; — /5%
wait for 1 sec;
enable_output <='0";
wait ;
end process;

end tbench;
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Appendix C Web Interface Source Code

C.1 Web Interface Top-Level

from __future__ import division

import os

import database_functions as df

from flask import Flask, render_template, redirect , request, flash , Markup,
session , jsonify

from flaskext.mysql import MySQL

import network_socket as ns

from time import time

from datetime import timedelta

# Links app to FR database. #

mysql = MySQL()
app = Flask(__name__)

app . config ["MYSQLDATABASEUSER” | = "root”

app . config ["MYSQLDATABASE PASSWORD” | = ” Brl9me80”
app.config ["MYSQLDATABASEDB” | = "bpb”

app.config ["MYSQLDATABASEHOST” | = ”localhost”
mysql.init_app (app)

temps = []

hums = []

times = []

# Redirects to login screen. #

@app . route (7 /")
def index ():
return redirect (” /home”)

def navbar():
render_template ("navbar.html”)

# Loads Home screen. #

@app. route (” /home” )
def home() :
return render_template (”home.html”)

# Displays graph of data retrieved from current proof run. #

@app . route (7 /active”)
def active():
try:
return render_template (”active.html”, at=ave_temp, max_t=max_temp,
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min_t=min_temp, ah=ave_hum , max_h=max_hum,
min_h=min_hum, t=ts, dur=duration)

except:
return render_template (”active.html” , at="null” , max_t="null”, min_t="
null” |
ah="null” |, max_h="null” , min_h="null” | t="null
7 dur="null”)

# Displays the previous runs for the current proof. #

@app. route (7

/stages”)

def stages():

if stages_done = 707:

return render_template (”stages.html”, stages=int(stages_done))
else:

old_temps, old_hums, old_-times = df.retrieve_stages(mysql, stages_done

)

ave_temp=[[] for x in xrange(len(old_temps))]

max_temp=[[] for x in xrange(len(old_temps))]

min_temp=[[] for x in xrange(len(old_temps))]

ave_hum=[[] for x in xrange(len(old_hums))]

max_-hum=[[] for x in xrange(len(old_hums))]

min_hum=[[] for x in xrange(len(old_hums))]

dur=[[] for x in xrange(len(old_times))]

for i in range(0, len(old_temps)):

if (len(old_temps) != 0):
ave_temp [1].append (sum(old_temps

( len(old_temps[i]))
max_temp [i].append (max(old_temps
(

(]
[1]

min_temp[i].append (min(old_temps|[i]

ave_hum[i].append (sum(old_-hums[i])/len(old_-hums[i]))

max_hum[1i].append (max(old_hums[i]))

min_hum[i].append (min(old_hums[i]))

dur[i].append (max(old_times[i]))

if len(old_temps) = 3:
return render_template (”stages.html”, stages=int(stages_done),

temps_rl=old_temps [0], temps_r2=old_temps|[1],

temps_r3=old_temps[2], hums_rl=old_hums][0],
hums_r2=old_hums[1],

hums_r3=old_hums [2], times_rl=old_times[0],
times_r2=old_times [1],

times_r3=old_times [2], 13=len(old_-temps[2]),
12=len (old_temps|[1]), ll=len(old_temps[0])

at=ave_temp, mt=max_temp, mint=min_temp, ah=
ave_hum , mbh=max_hum, minh=min_hum,

dur=dur)

elif len(old_temps) = 2:

return render_template (”stages.html”, stages=int(stages_done),
temps_rl=old_temps [0], temps_r2=old_temps|[1],
hums_rl=old_hums [0] , hums_r2=old_hums|[1],
times_rl=old_times [0], times_r2=
old_times[1],
l1=len(old_temps [0]), 12=len(old_temps[1])
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, at=ave_temp, mt=max_temp, mint=

min_temp
ah=ave_hum, mb=max_hum, minh=min_hum, dur=
dur)
elif len(old_temps) = 1:
return render_template (”stages.html”, stages=int(stages_done),
temps_rl=old_temps [0], hums_rl=old_hums[0],
times_rl=old_times [0], 1l=len(old_temps

[0]), at=ave_temp, mt=max_temp, mint=
min_temp ,
ah=ave_hum, mh=max_hum, minh=min_hum, dur=

dur)

Not actual routes

# Handles retrieving data form server. Constantly polling via Navbar. html #

@app . route (”/active /data” , methods=['GET', 'POST'])

def active_data():
global ave_temp
global max_temp
global min_temp
global ave_hum
global max_hum
global min_hum
global ts
global duration
global time
global stage
global stages_done
navbar ()

try:

”

print "Initializing connection to server..
socket = ns.init_socket ()

ns.connect (socket)

print " Connection established ..”

socket .send (" hey”)

data = socket.recv(32)

if data:
session [”current”] = 1”7
if 7current_stage” mot in session:
session ["current_stage”] = 707

split_data = data.strip().split(”,”)

print split_data

stage = int(split_data [2])

if stage = 0:

if session[”current_stage”] != 70":

times.append (times[—1]+1)
temps.append (int (split_data[0]))
hums. append (int (split_data [1]))
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ave_temp = sum(temps)/len (temps)
max_temp = max(temps)
min_temp = min(temps)
ave_hum = sum(hums) /len (hums)
max_hum = max(hums)
min_hum = min(hums)
ts=duration
stages_done = str(int(stages_done)+1)
return redirect (”active/save”)
else:
rem = int(split_data [3])
duration = int(split_-data [4])
time = (duration—rem)
print time
stages_done = str(int(stage—1))
if stage < int(session|[”current_stage”]):

session ["current_stage”] = str(stage)

elif stage > int(session[”current_stage”]):
session ["current_stage”] = str(stage)
if session[”current_stage”] != "17:

times .append (times[—1]+1)
temps.append (int (split_data |
hums. append (int (split_-data [1
ts=duration
return redirect (”active/save”)
if time not in times:
times .append (time)
temps.append (int (split_data [
hums. append (int (split_data [1
if (len(temps) != 0):
ave_temp = sum(temps)/len (temps)
max_temp = max(temps)
min_temp = min(temps)
ave_hum = sum(hums)/len (hums)
max_hum = max(hums)

0]))
1))

0]))
1))

min_hum = min(hums)
ts = time
else:
session [”current”] = 70”7

return jsonify (temp=temps, time=times, hum=hums, at=ave_temp, max_t=
max_temp ,
min_t=min_temp, ah=ave_hum, max_h=max hum, min_h=
min_hum, t=ts,
dur=duration, stage=int(stages_done), current=int(
session [”current”]))
except:

return "7

# Responsible for retrieving data from sidebar modals #

@app . route (”/active /save” , methods=['GET', 'POST'])
def active_save():
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if session[”current_stage”] != 70":
print ”Saving stage..\n”
temps_30 = []
hums_30 = []
times_30 = []
if len(temps) <= 20:
if times[0] not in times_30:
times_30.append (int (times [0]))
temps_30.append (temps [0])
hums_30. append (hums [0])
for j in xrange(0, len(temps)—1):
times_30.append (int (times[j]))
temps_30.append (temps[j])
hums_30. append (hums|[j])
if times[len(times)—1] not in times_30:
times_30.append (int (times[len(times) —1]))
temps_-30.append (temps [len (times) —1])
hums_30.append (hums|[len (times) —1])
else:
for j in xrange(1l, len(temps)):
if ((len(temps) > 20xj) & (len(temps) <= 20%(j+1))):
if times[0] not in times_30:
times_30.append (int (times [0]) )
temps_30.append (temps[0])
hums_30.append (hums[0])
for i in xrange(0, len(temps),
times_30.append (int (times[i
temps_30.append (temps[i])
hums_30.append (hums|[i])
if times[len(times)—1] not in times_30:
times_30.append (int (times|[len(times) —1]))
temps_30.append (temps[len (times) —1])
hums_30.append (hums[len (times) —1])
print temps_30, hums_30, times_30
df.delete_stage (mysql, stages_done)
df.create_stage (mysql, stages_done)
df.save_stage (mysql, temps_30, hums_ 30, times_ 30, stages_done)
if stage != 0:
temps [:] =]
times [:]=]]
hums [:] =[]
print ”Initiating new stage..\n”
session ["current_stage”] = str(stage)
return jsonify (temp=temps, time=times, hum=hums, at=ave_temp, max_t=
max_temp,

i+1):
1))

min_t=min_temp, ah=ave_hum, max_h=max hum, min_h=min_hum,

=ts ,

t

dur=duration, stage=int(stages_done), current=int(session[”

current”]))

# Main function where app is run. #

if __name__. — 7 __main__":
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public = 710.131.41.63”

local = 7127.0.0.1”
app.secret_key = ”"something”
app.run(debug=True, host=local)
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C.2

import os

from flaskext.mysql import MySQL
from itertools import repeat
import string

from multiprocessing import Pool

Web Interface Database Code

# Creates specified stage table in database. #

def create_stage (mysql, stage):

conn = mysql.connect ()
cursor = conn.cursor ()
query = 7create table stage.” + stage + ”(stageid varchar(3) not null,

temps varchar (500) not null, hums varchar(500) not null, times varchar
(500) not null, primary key(stageid));”

cursor . execute (query)
return conn.commit ()

# Queries database to return list of all project types. #

def save_stage (mysql, temps, hums, times, stage):
temps = " ,”.join (map(str, temps))
hums = 7,7 . join (map(str, hums))
times = 7,7 .join (map(str, times))
conn = mysql.connect ()
cursor = conn.cursor ()
query = ”insert into stage.” + stage + 7 values('” 4 stage + 7', " +
temps + "', ' 4 hums + 7', '"" + times + 7 '");”

cursor . execute (query )
return conn.commit ()

# Queries database to delete specified stage. #

def delete_stage (mysql, stage):
conn = mysql.connect ()
cursor = conn.cursor ()

query = ”drop table if exists stage_.” 4+ stage + 7;

cursor . execute (query )
return conn.commit ()

# Retreive specified temperature data. #

def retrieve_temps(stages, co, cu):

temps = []

for i in range(l, int(stages)+1):

b2

query = ”select temps from stage.” + str(i) + 7;”

cu.execute (query)

temps.append (cu. fetchall ())

return temps
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# Retrieve specified humidity data. #

def retrieve_hums(stages, co, cu):
hums = []
for i in range(l, int(stages)+1):
query = ”select hums from stage_.” + str(i) + 7;”
cu.execute (query)
hums. append (cu. fetchall ())
return hums

# Retrieve specified timing data. #

def retrieve_times(stages, co, cu):

times = []
for i in range(l, int(stages)+1):
query = 7select times from stage.” + str(i) + 7;”

cu.execute (query)
times.append(cu. fetchall ())
return times

# Convert strings ot floats #

def list_of_floats(a):
try:
a.remove('")
return map(float, a)
except:
return map(float, a)

# Retrieve current stage data in database. #

def retrieve_stages(mysql, stages):

new_temps = [[] for x in xrange(int(stages))]
new_hums = [[] for x in xrange(int(stages))]
new_times = [[] for x in xrange(int(stages))]
conn = mysql.connect ()

cursor = conn.cursor ()

temps = retrieve_temps(stages, conn, cursor)
hums = retrieve_hums (stages, conn, cursor)
times = retrieve_times (stages, conn, cursor)
table = string.maketrans( "', "', )

for j in range(0, int(stages)):
for i in range(0, len(str(list (temps[j])).strip().split(”,”))):
new_temps|[j].append(str(list (temps|[j])).strip().split(”,”)[i].

translate (table ,”u() ''[]”))

new_hums|[j].append(str(list (hums[j])).strip().split(”,”)[i].
translate (table ,”u() ''[]”))

new_times[j].append(str(list (times[j])).strip().split(”,”)[i].
translate (table ,”u() ''[]”))
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new_temps = Pool(4) .map(list_of_floats , new_temps)
new_hums = Pool(4) .map(list_of_floats , new_hums)
new_times = Pool(4) .map(list_of_floats , new_times)
return new_temps, new_hums, new_times
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Appendix D Recipe—Extra-Tangy Sourdough Bread

Hands-on time: 15 mins. to 20 mins.

Baking time: 30 mins.
Total time: 24 hrs.
Yield: 2 loaves
Ingredients:
e 1 cup “fed” sourdough starter e 1 Thsp sugar

e 1 1/2 -1 2/3 cups lukewarm water,

enough to make a smooth dough * 21/4 tsp salt

e 5 cups King Arthur Unbleached All- e 1/2-5/8 tsp sour salt (citric acid), op-

Purpose Flour tional, for extra-sour bread

Method:

1.
2.

Combine the starter, water, and 3 cups of the flour. Beat vigorously for 1 minute.

Cover, and let rest at room temperature for 4 hours. Refrigerate overnight, for about
12 hours.

. Add the remaining ingredients: 2 cups of flour, sugar, salt, and sour salt, if you're

using it. Knead to form a smooth dough, about 10 minutes.

Allow the dough to rise in a covered bowl until it’s relaxed, smoothed out, and risen.
Depending on the vigor of your starter, it may become REALLY puffy, as pictured;
or it may just rise a bit. This can take anywhere from 2 to 5 hours. Understand this:
sourdough bread (especially sourdough without added yeast) is as much art as science;
everyone’s timetable will be different. So please allow yourself to go with the flow, and
not treat this as an exact, to-the-minute process.

Gently divide the dough in half.

Gently shape the dough into two oval loaves, and place them on a lightly greased or
parchment-lined baking sheet. Cover and let rise until very puffy, about 2 to 4 hours.
Don’t worry if the loaves spread more than they rise; they’ll pick up once they hit the
oven’s heat. Towards the end of the rising time, preheat the oven to 425°F.

Spray the loaves with lukewarm water.

Make two fairly deep horizontal slashes in each; a serrated bread knife, wielded firmly,
works well here.

Bake the bread for 25 to 30 minutes, until it’s a very deep golden brown. Remove it
from the oven, and cool on a rack.
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