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ABSTRACT

High performance computing clusters have become the de facto standard for addressing large scientific
and commercial applications, yet there continues to be many challenges with building and using these
system structures including cost, power consumption, application scaling, systems management, and
parallel programming. The Big Orange Bramble (BOB) project, influenced by the smaller-scale Tiny Titan
of Oak Ridge National Laboratory, was created to provide students, faculty, and researchers a low-cost
platform to study and find solutions to these challenges. BOB involved the design and construction of a
high performance cluster composed of 68 quad-core ARMv8 64-bit Raspberry Pi 3s featuring one master
node, 64 worker nodes, a monitor node, and two storage nodes. Beyond the primary target of delivering a
functional system, efforts were focused on application development, performance benchmarking, and de-
livery of a comprehensive build and usage guide to aid those who wish to build upon the efforts of the project.

Keywords: Raspberry Pi, micro-node, ARM, cluster, education.

SpringSim-HPC, 2017 April 23-26, Virginia Beach, VA, USA; (©2017 Society for Modeling & Simulation International (SCS)



Mitchell, Young, Sangid, Deuso, Eckhart, Naderi, and Dean

1 INTRODUCTION

As current computing technology evolves, there is an ever increasing need for students in the computational
sciences field to have more exposure to local test bed parallel architectures. The main hindrance to this can
be attributed to accessibility, predominantly due to monetary constraints. The Big Orange Bramble (BOB)
project was conceived with The University of Tennessee, Knoxville’s Electrical Engineering and Computer
Science (EECS) department’s request for a low-cost, high performance cluster for students and faculty of the
department to readily maintain and utilize. The initial design of BOB was inspired by a 2015 project from
the Oak Ridge National Laboratory (ORNL) called Tiny Titan, which implemented 9 Raspberry Pis (Model
B+) as a $1,000 “classroom” cluster (Simpson 2013). Expanding on this, BOB’s construction incorporated
68 Raspberry Pi 3’s, a cluster size that was deemed sufficient for the purposes of the EECS department.
Additionally, BOB represents a departure from the typical model of high performance computing in that it
relies upon what may be called a micro-node architecture. This architecture uses relatively computationally
weak processing nodes in a large array in an attempt to achieve higher computational throughput for highly
parallel tasks. This goal of this paper is to detail BOB’s hardware and system components, performance
evaluations, and its respective usefulness and viability in high performance computation education.

2 HARDWARE

Figure 1: Picture of the BOB cluster

2.1 Hardware layout

The cluster consists of 68 Raspberry Pi 3’s, of which 2 are for storage, 1 acts as a monitor node for the sys-
tem, 64 are worker nodes, and 1 is the master (or head) node responsible for distributing jobs and resources.
Each Raspberry Pi 3 has a 1.2 GHz quad core ARM Cortex A53 CPU along with 1 GB of RAM and 100
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Mbps (million bits per second) Ethernet NIC. The 64 worker nodes are stacked together in groups of 8 in
the enclosure. The monitor node has its own touchscreen interface which shows current CPU temperatures
and loads for all nodes. The head node is connected to a monitor via HDMI to allow direct access to BOB
as well as display any graphical data produced by the cluster. Each node is connected to one of the two Eth-
ernet switches, and the 2 switches are connected to each other through a single Gigabit link. The maximum
network throughput for any individual node is 100 Mbps.

2.2 Power and Daughter Card

The cluster is powered by ten 100W, 5V switch-mode power supplies. Each node has been fitted with a
custom designed power monitoring daughter card. The daughter card monitors both the supply voltage and
current of each node by using a high side shunt resistor in series with the power supply and the Raspberry
Pi in addition to a Texas Instruments INA219 current monitoring integrated circuit (IC). The INA219 has
an integrated ADC, registers, and I°C interface. The information gathered from each node is sent to the
monitoring node at predetermined intervals allowing for the information to be analyzed visually by the
user. Because the daughter card powers the Raspberry Pi from the GPIO port and bypasses the input power
conditioning, each node lacks over voltage/current as well as reverse polarity protection. However, the
daughter card does include a supply voltage decoupling capacitor in order to filter some ripple and switching
noise from the power supplies. The daughter card schematic diagram is located in Appendix A.1.

3 SYSTEMS AND FRAMEWORKS

A variety of software packages and frameworks were necessary to build, operate, and maintain BOB. In this
section, some of the important systems are described.

3.1 Slurm

Slurm stands for Simple Linux Utility for Resource Management (“Slurm Workload Manager” n.d.). Slurm
is an open source system designed for highly scalable cluster management and job scheduling. Job schedul-
ing and resource management is necessary to afford multiple users the ability to use the cluster without
interfering with each other. A job scheduler is also needed to efficiently manage resources so multiple jobs
can run in parallel allowing for maximum usage of the cluster. There are many cluster management systems
(CMS) available; including Slurm, openSSI, and TORQUE. After looking into the other options, Slurm
was chosen for a variety of reasons. Slurm is a modern CMS and “as of the June 2016 Top 500 computer
list, Slurm was performing workload management on five of the ten most powerful computers in the world
including the number 2 system, Tianhe-2 with 3,120,000 computing cores” (“Slurm Commercial Support
and Development” n.d.). Additionally, the Slurm daemon that runs on the worker nodes is very lightweight
and only runs on job start and signaling. Using a lightweight manager like Slurm on the Raspberry Pis is
particularly important as each node does not have a significant amount of extra RAM to spare. Furthermore,
Slurm does not require any kernel modifications and is relatively self-contained. It is able to provide all
the functionality expected from a CMS. There were no implementation challenges, and Slurm was installed
using the Debian package manager.

Slurm has one centralized control manager which runs the slurmct1d daemon. This daemon monitors
the resources and work. An optional backup slurmct1ld daemon may be configured to act as the control
manager in the event the main controller goes down. Furthermore, a dedicated database node that keeps up
with accounting information for the cluster is also supported, but a separate accounting node is not required.
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Slurm supports an arbitrary number of worker nodes, and the worker nodes can be configured in different
network topologies. Each of the worker nodes runs the s1urmd daemon.

3.2 Ansible

To quickly deploy configuration changes and facilitate initial setup, a method for parallel communication
from the head node to the worker nodes is needed. Parallel ssh (pssh) was first option investigated. As its
name implies, it allows for running ssh calls in parallel, but it lacks any built-in system management tools.
The next method reviewed for parallel communication was Ansible (“Ansible Is Simple IT Automation”
n.d.), and it was clearly the better tool for the job. Ansible runs over ssh connections, can run in parallel,
and only needs to be installed on the head node. Additionally, Ansible is designed to deploy applications
and manage systems. Ansible can be used to run ad-hoc commands to quickly run one-off commands such
as copying an executable file or restarting the system. However, the real power of Ansible comes from the
modular playbooks that define system roles. Using these playbooks, different configurations can be set up
and applied to different components of the cluster. Each component of the cluster is set up as a role. For
example, one role is the “head" node, which sets up the configuration needed to run the cluster. Another
role is “worker," which performs all the setup unique to worker nodes in the cluster. Other roles can define
optional setups such as using NFS or OrangeFS as the file system.

Ansible works using modules that define an operation to be performed. The modules are basically small
programs that are copied to the target machine over an ssh connection and then run to perform a task. There
are many built-in modules to perform any common action and custom modules can also be created. For
example, the copy module is used to copy files, the command module is used to run a shell command, and
the apt module is used to configure packages. The modules are smart in that they only execute if there is
a change to be made. After running a module the result is “OK” when there was no change to the system,
“Changed” if a change was made to the system, and “failed” if the module execution encountered an error.
Playbooks are used to organize and automate the modules to be run. The playbooks are written in YAML,
a language which allows the playbooks to be stored in a human readable format. It also allows filtering on
the target machines so that the playbook can be reran only on the machines that failed to run. The team uses
Ansible scripts to set up all of the nodes in the cluster and also to restart or shutdown the cluster.

Ansible was simple to set up and can be installed via apt or pip. One caveat to note is that the version
found in pip is much newer than the one found in apt. BOB was switched to the newer pip version after
discovering that the desired modules were not available in the older apt version.

3.3 LDAP

One of the requirements for Slurm—and for most clusters—is to have a unified namespace for users, groups,
and home areas. The cluster needed a way to synchronize accounts and to provide an easy structure for
adding new users and groups. There are many ways to go about setting this up.

LDAP is a standard application protocol for accessing a distributed directory over the Internet. There are
multiple back-end databases to choose from, however, to LDAP the database structure is organized into a
tree with each entry in the tree having a unique identifier or distinguished name (DN). Each DN is a child
of another DN with the top level being the database root. Each entry contains a set of attributes which
defines the entry. Entries in the directory have different types; some are purely for organizing the directory,
while others represent POSIX groups or users. The tools for modifying the LDAP directory directly are
cumbersome and only need to be used to set up LDAP. Once established, scripts can be used to automate all
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the commands needed to change the users and groups. With the scripts, it is as simple to use LDAP as it is
to use the built-in commands for users and groups.

3.4 File Systems

Network File System (NFS) is a purely distributed file system protocol initially developed for Sun Mi-
crosystems. It has since become the standard file system in traditional Unix-based networks. Being purely
distributed, the file system uses a protocol to access storage instead of sharing block level access to the stor-
age. This access can be restricted on both clients and servers through the use of access control lists. Files
are accessed using the same interfaces and semantics as local files. NFS aims to be transparent in access,
location, concurrency, and failure while being heterogeneous and scalable. The most current version of NFS
is NFSv4, which is designed to support clustered server deployments and has the ability to provide scalable
parallel access to files distributed across multiples servers.

Raspbian Jessie, the operating system chosen for BOB’s Raspberry Pis, uses the standard Linux kernel and is
pre-installed with NFSv4. Because of this, NFS only needed to be instantiated on the Raspberry Pis to then
become the implemented file system. NFS required no installation and minimal setup to become functional.
Therefore, it was the file system deployed on the initial subset of operational nodes for BOB. The simplicity
of the NFS setup allowed for application development and power analysis to begin almost immediately.

4 TESTING

In order to assess the usefulness of BOB, several HPC relevant benchmarks were used to evaluate the per-
formance of the cluster. High Performance Linpack (HPL), High Performance Conjugate Gradient (HPCG),
and the OSU MPI Benchmarks were used to create an overall picture of the expected performance of BOB.

4.1 HPL

HPL (High Performance Linpack) is a benchmark to determine the upper bound of double precision floating
point performance on a distributed parallel system. It solves a random dense linear system Ax = b with LU
decomposition, and it checks the accuracy after the calculation to ensure a valid result. Dense linear algebra
calculations are applicable to many problems and a good method to measure peak performance for a system
(Petitet n.d.).

HPL requires an MPI and BLAS library. The BOB system is using MPICH for message passing and Open-
BLAS as the linear algebra library. OpenBLAS was selected over some alternatives due to its high perfor-
mance on ARM CPUs. In this case, OpenBLAS resulted in nearly an order of magnitude higher performance
than ATLAS for the Raspberry Pi 3 SoC.

For each test, the block size (NB) was set to 100 which was found to offer favorable performance. The
process grid (P x Q) was set to be as close to square as possible. The matrix size (N) for each test was set
to be approximately v/105002 x #nodes. A matrix of 10500 per node was found to use most of the Pi’s
available RAM and offer the highest overall performance.

From the demonstrated performance in Graph 2, HPL successfully scales across all 64 nodes with progres-
sively smaller gains as additional nodes are added to the application.
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Figure 2: HPL Performance

Table 1 displays the detailed data from HPL testing. Limited by the slow 100 Mbps Ethernet interconnect,
a scaling efficiency of 37.7% across the cluster is not surprising. However, a total performance of 148.8
GFLOPs (billions of floating point operations per second) does represent a useful amount of performance in
line with or greater than many personal workstations.

Table 1: HPL Performance

# Nodes N Time (s) | GFLOPs | Scaling Efficiency
1 10500 | 125.21 6.165 100%
2 15000 | 266.35 8.449 68.5%
4 21000 | 409.25 15.09 61.2%
8 30000 | 682.86 26.36 53.4%
16 42000 | 1117.47 44.20 44.8%
24 51000 | 1357.19 65.16 44.0%
32 59000 | 1626.52 84.18 42.7%
40 66000 | 1890.25 101.4 41.1%
48 73000 | 2131.70 121.7 41.1%
56 79000 | 2454.77 133.8 38.8%
64 84000 | 2655.07 148.8 37.7%

4.2 HPCG

HPCQG, or High Performance Conjugate Gradient, is a recent benchmark designed to be used in conjunction
with HPL to provide a more complete picture of the performance of a cluster.

Like HPL, HPCG solves Ax = b; however, HPCG uses a sparse matrix representation using an iterative
conjugate gradient method rather than LU decomposition. The end result of these changes is a benchmark
which tries to capture lower bound performance rather than peak performance. Using both HPL and HPCG,
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one can determine the upper and lower bounds for typical cluster applications. Most programs will not
achieve HPL levels of performance but will be able to extract more performance than HPCG. This makes
the combination of the two valuable when evaluating the performance of a cluster system (Dongarra n.d.).

In contrast with HPL, HPCG scaled very well as seen in Figure 3. The scaling was nearly linear as HPCG
was run on anywhere from a single node to all 64 worker nodes.
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Figure 3: Reference Implementation HPCG Performance

Table 2 shows the full results of HPCG testing. Even across all 64 nodes, the scaling efficiency was in excess
of 94% compared to just above 37% when using all 64 nodes in HPL. However, it is important to note that
peak HPCG performance was much lower than peak HPL performance.

Table 2: Reference Implementation HPCG Performance

Nodes | GFLOPs | Scaling
1 0.08402 | 100.00%

2 0.16824 | 100.12%

4 0.33422 | 99.44%

8 0.65953 | 98.12%
16 1.30178 | 96.83%
24 1.90108 | 94.27%
32 2.55881 | 95.17%
48 3.77325 | 93.56%
64 5.07949 | 94.46%

This excellent, near linear scaling is possible when the computation and communication can be overlapped
with the computation time exceeding the required communication. Thus, applications with this type of
communication pattern are particularly suited to a system like BOB with several nodes but with limited

networking performance between the nodes.
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4.3 Networking Benchmarks

In order to characterize the performance of the 100 Mbps Ethernet interconnect and its impact on MPI
performance, benchmarks from the Ohio State University were used to profile the MPI performance (“OSU
Micro-Benchmarks" n.d.). In this report, data for the point to point bandwidth and the broadcast call latency
is included.

Figure 4 demonstrates the throughput using point to point communication across the cluster interconnect.
The maximum throughput correlates with the expected maximum throughput of the Ethernet interface. At
transfer sizes of 2KB and larger, the transfer throughput is in excess of 11 MB/s.

Figure 5 also demonstrates the latency in a blocking broadcast collective communication. The graph shows
the effect of running a broadcast across additional nodes. Because the cluster has limited bandwidth between
the two collections of 32 nodes, the 64 node configuration demonstrated the lowest overall performance and
also yielded some interesting artifacts in the latency curve.
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Due to the low performance of the 100 Mbps Ethernet networking available on each node, it necessary to
be mindful of communication overhead when running and developing parallel applications for BOB. It is
important to overlap communication and computation by using non-blocking MPI communication, and one
should also take care to try to maximize the throughput of any communications. With point to point sends
and receives, using 2 KB and larger messages appear to optimize the throughput of the interconnect. For
collectives like MPTI_Bcast, the performance is dependent on both the number of nodes participating and
the size of the message.

4.4 Power Utilization

With the power monitoring capable daughter card described in section 2.2, power consumption data was
collected both during idle and load states. This data was collected on a per-node basis and neglects the
power of the network switches and power supply losses. In order to evaluate the power usage of the cluster,
voltage and current measurements were collected from each node every second and aggregated back to the
monitoring node. This simple method involved very low overhead both for each node and the network.
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Table 3 displays the testing results for a single node. The idle situation is the node running only the standard
background services. The HPL situation is the node individually running HPL. The typical power numbers
represent the average of all samples collected over the duration of the test. For the idle test, this was
arbitrarily selected to be one minute.

Table 3: Overview of Power Consumption Per Node

Situation | Typical (W) | Maximum (W)
Idle 1.48 -
HPL 5.16 7.38

Table 4 displays the testing results for all of the worker nodes. As with table 3, the idle test consists of all the
nodes running only the standard background services. For the HPL test, all 64 worker nodes are collectively
running HPL in an 8 x 8 process grid. It should be noted that the power used in this scenario is not simply
64 times the individual node power usage. Because HPL requires communication between nodes, there are
periods of time in which the nodes are waiting for an MPI communication to complete which results in less
CPU utilization and thus lower power consumption.

Table 4: Overview of Power Consumption For All Workers

Situation | Typical (W) | Maximum (W)
Idle 95.04 95.78
HPL 233.0 442 .4

5 RELATED WORK

Similar projects include Oak Ridge National Laboratory’s Tiny Titan project, the University of Southhamp-
ton’s Iridis-Pi project, and the University of Maine’s Pi 2 cluster. The Big Orange Bramble project attempts
to build on these previous Raspberry Pi based clusters. By using Raspberry Pi 3 boards, BOB is able to offer
an order of magnitude higher performance in HPL than the University of Maine cluster which used 24 Pi 2
nodes (Cloutier 2016). BOB also performs about two orders of magnitude better in HPL. compared to the
Iridis-Pi project which utilized 64 Pi nodes (Cox 2013).

6 CONCLUSION

In conclusion, the Big Orange Bramble cluster (BOB) offers a low cost educational platform for learning the
details of high performance computing. The goal of this cluster was to learn how to build a parallel system
and then offer that system to faculty and students for educational purposes. Through the construction of the
cluster, the team gained many valuable lessons about cluster management and performance characteristics.
Now, BOB has been successfully used for weather forecast modeling, facial recognition, neural network
generation, stochastic equation simulation, and other uses. The success of BOB has also had led to the
development of a second cluster titled ALICE which includes 32 PINE A64+ worker nodes and 12 Nvidia
Jetson TX1 worker nodes. ALICE attempts to leverage the lessons learned through the development and
analysis of BOB to create an improved cluster with higher RAM available per node, a higher speed intercon-
nect (Gigabit Ethernet vs 100 Mbps Ethernet), and the opportunity for GPGPU programming via the Jetson
TX1’s GPU.

The findings and performance implications for BOB can be extended beyond just a bramble of Raspberry
Pis. In the future, it is both possible and likely that some parallel systems will take advantage of a large
number of inexpensive and low power ARM based nodes. Each of these nodes will, like BOB, have limited



Mitchell, Young, Sangid, Deuso, Eckhart, Naderi, and Dean

resources in comparison to a more traditional Intel powered node. BOB demonstrates some feasibility for a
simple Beowulf cluster of ARM cores, but this project also exhibited some of the potential drawbacks asso-
ciated with such an approach. For BOB, the low amount of RAM and insufficient interconnect performance
posed challenges for scaling some applications like the HPL benchmark. However, applications like the
HPCG benchmark are able to scale at nearly linear rates across the cluster. One primary takeaway for this
architecture is that performance is highly dependent on the application, and some applications can expose
bottlenecks earlier and more quickly than with a more traditional system. Going forward, it is important
to continue research on many-core ARM based HPC systems in order to identify best practices along with
optimal applications to take advantage of the hardware.

Additional details about the Big Orange Bramble project are available on Dr. Mark Dean’s web page (http:
/Iweb.eecs.utk.edu/~markdean/).

ACKNOWLEDGMENTS

This paper was made possible through support from the University of Tennessee and Dr. Mark Dean. Dr.
Dean provided the necessary funding, vision, and guidance to successfully build BOB. Additionally, BOB
would not be possible without the full team of graduate and undergraduate students who collaborated over
the Summer of 2016. The full team includes Gregory Simpson, Shawn Cox, Kelley Deuso, Patricia Eckhart,
Chencheng Li, Liu Liu, Parker Mitchell, Taher Naderi, Jordan Sangid, Sepeedeh Sepehr, Caleb Williamson,
and Aaron Young.


http://web.eecs.utk.edu/~markdean/
http://web.eecs.utk.edu/~markdean/

Mitchell, Young, Sangid, Deuso, Eckhart, Naderi, and Dean

A APPENDICES

A.1Daughter Card Schematic
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