
The University of Tennessee
Knoxville

ECE 599

Supercomputer Design and Analysis

Big Orange Bramble

Supervisor:
Dr. Mark Dean

Team Leader:
Gregory Simpson

Team:
Shawn Cox

Kelley A. Deuso
Patricia Eckhart

Chencheng Li
Liu Liu

J. Parker Mitchell

Taher Naderi
Jordan Sangid
Sepeedeh Sepehr
Caleb Williamson
Aaron Young

August 9, 2016

Abstract

This project involved the design and construction of a high performance cluster composed
of 68 quad-core ARMv8 64-bit Raspberry Pi 3s. The primary intent of the project was
to establish the operating environment, communication structure, application frameworks,
application development tools, and libraries necessary to support the effective operation of a
high performance computer model for the students and faculty in the Electrical Engineering
and Computer Science Department of the University of Tennessee to utilize. As a founda-
tion, the system borrowed heavily from the Tiny Titan[21] system constructed by the Oak
Ridge National Laboratory, which was a similar but smaller-scale project consisting of 9
first generation Raspberry Pis. Beyond the primary target of delivering a functional system,
efforts were focused on application development, performance benchmarking, and delivery
of a comprehensive build/usage guide to aid those who wish to build upon the efforts of this
project.

Table of Contents
1 Introduction 1

2 List of Parts and Materials 2
2.1 Primary Parts List . 2
2.2 Optional Parts List . 2

3 Implementation 3
3.1 Hardware Development . 3

3.1.1 Power Distribution Network . 3
3.1.2 Daughter Card . 5
3.1.3 Enclosure . 7
3.1.4 Monitor Node . 10

3.2 Operations & Systems Development . 12
3.2.1 Raspbian . 12
3.2.2 Slurm . 12
3.2.3 Ansible . 13
3.2.4 Security (LDAP) . 14
3.2.5 File System . 16

Network File System (NFS) . 16
OrangeFS (OFS) . 17
GlusterFS . 18
Implementing OrangeFS . 18
Implementation Challenges . 20

3.2.6 Networking . 22
3.2.7 Monitoring . 22

3.3 Standard Packages . 23
3.4 Frameworks and Tools Development . 24

3.4.1 Hadoop . 24
Hadoop on NFS . 24
Hadoop on OrangeFS . 24

3.4.2 TensorFlow . 25
3.5 Applications Development . 26

3.5.1 SPH . 26
3.5.2 PiBrot . 27
3.5.3 Parallel Pi . 27
3.5.4 Monte Carlo Simulations . 28

GNU Parallel . 28
Multiple Runs in Single Batch File . 29

3.5.5 Numeric Integration . 30
3.5.6 DANNA Evolutionary Optimization 31
3.5.7 Fire Dynamics Simulator (FDS6 by NIST) 31
3.5.8 HPL - High Performance Linpack . 33
3.5.9 HPCG - High Performance Conjugate Gradient 33

i

4 Testing Results 33
4.1 HPL Benchmark Results . 34
4.2 HPCG Benchmark Results . 36
4.3 File System Benchmark Results . 37
4.4 Networking Benchmark Results . 41
4.5 Applications and Frameworks Benchmark Results 42

4.5.1 SPH . 42
4.5.2 PiBrot . 43
4.5.3 Parallel Pi . 43
4.5.4 Monte Carlo . 44
4.5.5 Numeric Integration . 46
4.5.6 DANNA . 48
4.5.7 Fire Dynamics Simulator Results . 49
4.5.8 TensorFlow . 51

5 Challenges, Conclusions, and Future Considerations 52

References 56

Appendices 57

Appendix A Hardware/Systems Build Guide 57
A.1 Hardware . 57

A.1.1 USB Hub Modifications . 57
A.1.2 Daughter Card . 59

A.2 Systems . 61
A.2.1 Cluster Setup . 61
A.2.2 Security (LDAP) . 62
A.2.3 OrangeFS and MPICH2 . 63
A.2.4 Monitor Service . 66
A.2.5 Power on BOB . 66
A.2.6 Restart BOB . 66
A.2.7 Shutdown BOB . 67
A.2.8 LDAP Usage . 67
A.2.9 Start Monitor GUI . 68
A.2.10 Monitor GUI via X11 forwarding . 68

Appendix B Application Install and Usage Guide 69
B.1 Frameworks . 69

B.1.1 TensorFlow . 69
B.2 Applications . 70

B.2.1 HPL . 70
B.2.2 HPCG . 71
B.2.3 SPH . 71
B.2.4 PiBrot . 72

ii

B.2.5 Parallel Pi . 73
B.2.6 Monte Carlo . 74
B.2.7 Numeric Integration . 75
B.2.8 DANNA . 75
B.2.9 Fire Dynamics Simulator . 76

Appendix C Daughter Card Schematic 79

Appendix D Daughter Card Bill of Materials 80

List of Figures
1 Hardware Diagram . 3
2 Power Supply and USB Hub. 5
3 The GPIO connection of the Raspberry Pi 3 6
4 The Daughter Card 3D render . 6
5 Rack for housing enclosure . 7
6 Custom-built Enclosure . 8
9 Front of Rack and Enclosures . 8
7 3D Printed Parts . 9
8 Rear of Custom Enclosure . 10
10 Rear of Rack and Enclosures . 10
11 Monitor Node Display (front) . 11
12 Monitor Node Display (back) . 11
13 Software Stack . 12
14 Slurm Architecture . 13
15 LDAP Stucture . 15
16 How OrangeFS Works . 17
17 File in OrangeFS . 18
18 Monitor GUI . 23
19 Monitor Map . 23
20 LeNet Structure . 26
21 An Example of a Batch File Using GNU Parallel 29
22 An Example of Multiple Runs in Single Batch File 30
23 Riemann Sums . 31
24 Results of bench1.fds Using OpenMP (on AWS) from Salter[19] 32
25 HPL Performance at 1150 Mhz—Enclosure 36
26 Reference Implementation HPCG Performance 37
27 Parallel Pi Scaling Results . 44
28 Monte Carlo Scaling Results . 45
29 Percent Error vs. Number of Cores . 46
30 Run Time vs. Number of Cores . 47
31 Percent Error vs. Number of Rectangles . 47
32 DANNA EO Performance for Pole Balancing 49

iii

33 Graphical results of tests dividing a simple room into multiple meshes on the
Raspberry Pi cluster. 50

34 Graph of TensorFlow Performance . 51
35 Success. 54
36 USB Hub: Sliced Power Bus . 57
37 USB Hub: Power Rail Connections . 58
38 USB Hub: Ground connection and Heat-shrink 58
39 USB Hub: Complete with Power Supply . 59
40 GPIO Diagram . 60
41 The Daughter Card Schematic Diagram . 79
42 The Daughter Card Bill of Materials . 80

List of Tables
1 HPL Performance when throttled . 34
2 HPL Performance at 1150 Mhz—Open Air 35
3 HPL Performance at 1150 Mhz—Enclosure 35
4 Reference Implementation HPCG Performance 37
5 Sequential Single Node NFS Storage Performance 38
6 MPI-IO Read and Write Rates (MB/s) . 39
7 OFS MPI-IO Read and Write Rates (MB/s) . 39
8 Read Rates (MB/s) . 40
9 Write Rates (MB/s) . 40
10 Read Rate (MB/s) . 40
11 Write Rate (MB/s) . 40
12 Read Rate (MB/s) . 40
13 Write Rate (MB/s) . 40
14 Single Node, Threaded Network Performance 41
15 Multiple Node Internal Network Performance 41
16 External Network Performance . 42
17 Test Results for Monte Carlo Application . 45
18 Test Results for Numeric Integration Application (Note: # samples are per

core) . 48
19 DANNA EO Performance for Pole Balancing 48
20 Tabular results of tests dividing a simple room into multiple meshes on a

Raspberry Pi cluster. 50
21 TensorFlow Performance . 51

iv

1 Introduction

Currently, computing systems are progressing towards the exascale, device structures are be-
ing manufactured on the nanoscale scale, and Big Data continues to grow. However, complex
phenomena such as weather, fluid and particle dynamics, astrophysics, as well as molecu-
lar behavior have been difficult to model with traditional computing systems due to their
limited processing, communication, and storage capabilities. With the present technology
and growing need for more advanced computing systems, High Performance Computing has
become an increasingly significant vehicle for technological progress.

This document is the accumulation of design, implementation, and testing results of a high-
performance parallel computing cluster, code-named Big Orange Bramble, or BOB, using
the Raspberry Pi 3 single-board computer. The purpose of this document is to archive ap-
proaches and solutions used by the team while creating a Raspberry Pi-based Beowulf cluster
in such detail that the entire project can be recreated and further developed by another team
without the need for extensive understanding of parallel systems. The contents of this com-
position begins with an overview of the project followed by implementation details for each
hardware and software component. Testing and performance results for each component
are then discussed in detail. The remaining sections discuss the team’s final conclusions as
well as specific shortcomings of the system which could potentially be avoided by those who
wish to construct a similar system using this guide. Finally, attached to the report is a
complete Hardware/Systems Build Guide that can be found within Appendix A and
an Application Install and Usage Guide within Appendix B.

The authoring group is comprised of graduate and undergraduate students enrolled at The
University of Tennessee, Knoxville studying within the fields of Computer Science, Computer
Engineering, and Electrical Engineering.

1

2 List of Parts and Materials

2.1 Primary Parts List

Quantity Item
68 Raspberry Pi 3 Model B+

68 Addico/ Raspberry Pi Heatsink Set for B/B+ 2 and 3 (Set of 3 Aluminum
Heat Sinks)

68 64GB SD Card Ultra
64 Custom Daughter Card for Power Monitoring
23 3 pack, 3ft USB 20AWG Charging Cables
16 GeauxRobot Raspberry Pi 3 Model B 4-layer Dog Bone Stack, Clear Case Box
16 5 pack, 6ft Flat Ethernet Cables
10 USB 7-Port Hubs
10 5V, 20A Trimmable Power Supplies
8 AC Infinity Multifan S3, Quiet 120mm USB Fan
2 PDU - 12 Outlet

2 TP-LINK TO-SG1048 48-Port 10/100/1000Mbps Gigabit 19-inch Rackmount
Switch, 96 Gbps Switching Capacity

2 4TB USB HDD
1 Custom 19” Rack Enclosure
1 Wireless Microsoft Xbox 360 Controller
1 USB Ethernet adapter

Total approximate cost: $8000

2.2 Optional Parts List

Quantity Item
1 HDMI Monitor
1 USB Keyboard
1 USB Mouse
1 Raspberry Pi 7” Touchscreen Display

2

3 Implementation

3.1 Hardware Development

Figure 1: Hardware Diagram

3.1.1 Power Distribution Network

The main function of the power distribution network is to deliver the appropriate voltage
and current to each Raspberry Pi node so that the performance could be maximized. If
the power distribution were to provide less power than adequate, the nodes would fail to
perform at an expected level. If the power distribution network were to provide more power
than necessary, especially in the event of over-voltage, there would be an increased risk of
board-level device failure resulting in irreparable damage to a node.

A secondary function of the power distribution network is to condition the power entering
the nodes. Adequate noise filtering was to be designed so that the noise floor on the DC rails
would be minimized. A large noise floor (greater than 20% of the DC level) could lead to
the misbehavior of board-level components as well as corrupt the integrity of digital signals.

The design of a power distribution network began as a redesign of the originally implemented
network. The original power network consisted of generic USB charge stations and generic
6 ft micro USB cables. This design was determined to be less than adequate during High-
Performance Linpack (HPL) benchmarking. While the nodes were approaching maximum
computation load, the voltage level measured on the boards would sag below the acceptable
threshold for Ethernet-based communications causing the loss of multiple and often all nodes
from the cluster. This under-power event was characterized by a sag in the Vsupply measured

3

locally from the Raspberry Pi 3’s GPIO 5 V pins. It was shown that the steady state voltage
measured locally on the Raspberry Pi 3 was on average 4.6 V. As the current increased, the
voltage would begin to sag sometimes below 4 V with a duration greater than 1 s.

The original assumption was that the power supplies were not capable of providing the
required current during HPL benchmarking. After performing a dissection of the power
supplies, the supply voltage was measured 5.1 V with no load as well as with 8 of the
channels under load of 2.5 A. This evidence indicated that the power supplies were not
under-performing. The next logical culprit of this under-voltage was the extremely long USB
cable transmitting the power between the power supplies and the nodes. A group of these
cables were tested showing an average nominal impedance of 600 mΩ for each path. When
connected to the power supply, the impedance of the send and return path was measured
to be on average 1.2 Ω. The cables were cut and examined to show a gauge of 28 AWG
which would be a very poor conductor under the maximum measured load of 750 mA during
periods of high computation. Using the impedance of the cables and the max current at
load, the expected voltage drop across the wire was (1.2 Ω)(750 mA) = 1 V. The calculated,
expected voltage drop was still lower than the measured results.

A closer look at the anatomy of the power supplies showed that a 100 mΩ resistor was being
used in a current sense feature of the supply (the channel would be clamped if a current
> 2.7 A was detected). Furthermore,an evaluation of the Raspberry Pi board determined a
2.5 A fuse (MF-MSMF250) was being used with an expected resistance of 15 mΩ − 100 mΩ
and a PMOS device (DMG2305UX) was being used for reverse polarity protection that
contained an RDS,ON of approximately 68 mΩ − 200 mΩ. When considering these newly
discovered impedances the worst-case voltage drop under load could be calculated to be
(1.6 Ω)(750 mA) = 1.2 V. Using this calculated voltage drop, the under-power of the power
distribution network could be explained.

As a result of these evaluations, new power supplies with V -adjust capabilities, USB hubs,
and shorter, heavier gauge USB cables were ordered. The new power supplies could reach a
maximum average voltage of 5.8 V and supply greater than 10 A with no sag in voltage (100 W
rated). The new cables used 20 AWG stranded wires for power lines, which at 3 ft decreased
the nominal cable impedance to below 100 mΩ. However, the new USB hubs required some
modification in order to be used in the power distribution network (See Appendix A.1.1).
On the printed circuit boards (PCBs) within the USB hubs, the 5V trace width was measured
to be approximately 100 mils (1 mil = 0.001 in). The trace width required to carry the desired
current capability of 10 A is 370 mils. Therefore, the PCBs were modified by slicing the 5 V
bus trace and placing 16 AWG wires across them to allow for current fanning. Additionally,
16 AWG wires were connected to the Ground plane of the PCB and the initial 5 V connection
and brought out of the enclosure as a twisted pair to connect to the screw terminals of the
new power supply.

The present power distribution network consists of 10 Switching Mode Power Supplies
(SMPS), each of which provides up to 100 W. Every SMPS is responsible for powering
up to 7 USB ports which gives 2.86 A of capacity per port which is safely above the expected
draw of ∼ 1 A under load. Each USB port has the option to have power toggled through a
push button adjacent to the port. The power supply and USB hub are shown in Figure 2.

4

Figure 2: Power Supply and USB Hub.

3.1.2 Daughter Card

The intent of the Daughter Card is to provide access to the input power of each individual
Raspberry Pi node for a current sense and voltage sense device. The power monitoring device
selected was the Texas Instruments INA219. This device monitors the voltage drop across a
high side, current sense resistor and will send this information along with the supply voltage
from an integrated Analog-to-Digital Converter (ADC) to the Raspberry Pi through I2C.

Because of the difficulties associated with attempting to place the I-sense shunt resistor
in series with the Raspberry Pi’s USB power entry, the best approach was determined to
be to use the Raspberry Pi’s General Purpose Input/Output (GPIO) ports as a power en-
try (Figure 3). Though advantageous for the power monitoring, this did bypass all of
the Raspberry Pi’s board-level power conditioning which included reverse polarity protec-
tion and over-current protection in addition to basic filtering. Consequently, the designed
daughter card would have to include at minimum a power supply filter capacitor. Using
Altium Designer, a schematic was drafted to implement the INA219 and Daughter Card (see
Appendices C and D). A 3D model of the daughter card can be seen in Figure 4.

While the PCBs were being manufactured, the firmware team began to experiment with the
INA219’s I2C interface with the GPIO of the Raspberry Pi 3 using the Adafruit INA219
Breakout Board (https://www.adafruit.com/product/904). The I2C libraries provided
by Adafruit for the INA219 current and voltage sensor were designed with the Raspberry
1 and 2 in mind. As a result, it became necessary to modify the library by hardcoding
some values specific to the Raspberry Pi 3. The library and monitoring code were written
in Python.

Currently there are two ways to read measurements from the daughter card. One way is

5

https://www.adafruit.com/product/904

Figure 3: The GPIO connection of the Raspberry Pi 3

Figure 4: The Daughter Card 3D render

6

Figure 5: Rack for housing enclosure

to utilize the monitoring script (see Section 3.2.7). This functionality was added once
the monitor node became fully operational. The second and original method was to use a
wrapper Python script in which the IP addresses for each node had to be hard coded to
allow for an SSH connection to each node. This was an inefficient method of reading the
daughter card output. The monitoring script uses a much more efficient message passing
interface via sockets. However, for the initially small number of daughter cards used (2)
an SSH connection was a simple and easy to implement solution. Future work may include
expanding the use of the daughter cards to monitor every node in the cluster, in which case
the monitoring script will become more useful and easier to maintain over the wrapper script.
The current build utilizes daughter cards on each of the worker nodes. (A complete user
guide to programming and implementing the Daughter Card is located in Appendix A.1.2)

3.1.3 Enclosure

The enclosure was designed for the purpose of protecting the clusters from environmental
threats (such as wandering hands), but the enclosure was to have aesthetic value as well. The
housing of the enclosure is a large 4 ft rack, which has locking casters so that the computer
can be easily moved if necessary (See Figure 5). Rack shelves were used to hold the network
switches and power supplies, but a custom enclosure was made for the towers of Raspberry
Pis (Figure 6).

The materials used for the custom enclosure consisted of 0.25 in sheets of Acrylic Plexiglass;
in addition to 3D printed Polylactic Acid (PLA) corner braces and stainless steel hardware.
The models for the 3D printed parts are shown in Figure 7. The Plexiglass was cut so that
the enclosure would be 17 in× 8.75 in× 9.25 in. With these dimensions, there would be just

7

Figure 6: Custom-built Enclosure

enough room for 4 stacks of 8 Raspberry Pi units and all then necessary cabling (power and
Ethernet). Cooling fans were attached to the rear of the enclosure as shown in Figure 8.

When laying out the enclosure, the power distribution network described in Section 3.1.1
was routed first. This was done so that priority could be given to the safety considerations
of having 110 ∼ 120 V AC throughout the rack. (It should be noted that in some instances
located near the power supplies, AC carrying wires are exposed and possess the risk for
electrocution if care is not taken while performing maintenance on the system.) Once
the power distribution network was routed, the Ethernet switches and populated custom
enclosures were added to the rack. Mechanical connections within the rack were formed
with Velcro if there was enough surface area for contact or cable zip-ties otherwise. The
zip-ties and Velcro cable-wraps were used to tidy the power and communication cables. The
completed rack and enclosures are shown in Figures 9 and 10.

Figure 9: Front of Rack and Enclosures

8

(a) Corner Brace (b) Fan Connector

(c) L Brace (d) Fan Brace

Figure 7: 3D Printed Parts

9

Figure 8: Rear of Custom Enclosure

Figure 10: Rear of Rack and Enclosures

3.1.4 Monitor Node

The monitor node consists of a single Raspberry Pi mated to a 7” touchscreen display. The
purpose of the node is to receive parameters from each node in the cluster, such as CPU
temperature or load, and present these values to the user via an interactive GUI. The GUI
offers a view of the status of all nodes simultaneously using a heatmap that represents a
single parameter as well as a view that provides all details of a single node at once. Details
regarding the implementation of the GUI and the methods used for receiving and processing
the status of each node are discussed in detail in Section 3.2.7.

10

Figure 11: Monitor Node Display (front)

Figure 12: Monitor Node Display (back)

11

3.2 Operations & Systems Development

Figure 13: Software Stack

3.2.1 Raspbian

Raspbian is a fork of the common Linux distribution Debian. Specifically, for this cluster,
Raspbian Jessie is being used which corresponds with Debian Jessie. It serves as a customized
Linux environment optimized for the specific hardware of the Raspberry Pi board, and it
includes all of the necessary drivers and hardware support for the full functionality of the
Pi. However, at this time, the Broadcom BCM2837 SoC does not have support for a 64-bit
kernel despite being a 64-bit processor. Instead, Raspbian Jessie utilizes a 32-bit ARMv7
kernel. This does provide lower memory utilization than 64-bit, but it also misses out on
the ISA and performance improvements of ARMv8.

3.2.2 Slurm

Slurm stands for Simple Linux Utility for Resource Management.[23] Slurm is an open source
system designed for highly scalable cluster management and job scheduling. Job scheduling
and resource management is needed to allow multiple users to be able to use the cluster
without interfering with any of the other users. A job scheduler is also needed so that the
resources needed for a run can be specified and the job can be run when the resources are
available. There are many cluster management systems (CMS) available, including Slurm,
openSSI, and TORQUE. After looking into the other options, Slurm was chosen for a variety
of reasons. Firstly, Slurm is a modern CMS and “as of the June 2016 Top 500 computer list,
Slurm was performing workload management on five of the ten most powerful computers
in the world including the number 2 system, Tianhe-2 with 3,120,000 computing cores.”[22]
Additionally, the Slurm daemon that runs on the worker nodes is very lightweight and only

12

Figure 14: Slurm Architecture

runs on job start and signaling. Using a lightweight manager is particularly important on the
Raspberry Pis as they do not have a significant amount of extra RAM to spare. Furthermore,
Slurm does not require any kernel modifications and is relatively self-contained, which allows
for easy installation. Slurm is able to provide all the functionality expected from a CMS
and it can be easily installed and configured. There were no implementation challenges and
Slurm was easily installed using the Debian package manager.

Figure 14 shows the architecture Slurm uses. Slurm has one centralized control manager
which runs the slurmctld daemon. This daemon monitors the resources and work. An
optional backup slurmctld daemon can be configured in case the main controller goes down.
There can also be a dedicated database node that keeps up with accounting information for
the cluster. Slurm can be used without an accounting node setup. Slurm can support an
arbitrary number of worker nodes and the worker nodes can be configured into different
network topologies. Each of the worker nodes runs the slurmd daemon.

Users and administrators interact with Slurm using the commands provided by Slurm.
scontrol is an administrative tool that is used to view or change the state of the clus-
ter. sinfo is used to report the state of the partitions and nodes in the cluster. squeue is
used to report the state of jobs and to see jobs waiting to run. scancel is used to cancel
a job. sacct is used to report accounting information. srun is used to run a job for real
time execution. sbatch is used to submit a scripted batch job. salloc is used to allocate
resources for interactive use.

3.2.3 Ansible

In order to be able to deploy configuration changes and facilitate initial setup, a method
for parallel communication with worker nodes is needed. Parallel ssh (pssh) was first in-

13

vestigated. It allows for running ssh calls in parallel, but it lacked any built-in system
management tools. The second looked into was Ansible.[1] Ansible was clearly the better
tool for the job. Ansible runs over ssh connections. It can run in parallel and only needs
to be installed on the head node. Additionally, Ansible is designed to deploy applications
and manage systems. Ansible can be used to run ad-hoc commands to quickly run one-off
commands such as copying an executable file or restarting the system. However, the real
power of Ansible comes from the modular playbooks that defile system roles. Using these
playbooks, different configurations can be setup and applied to different components of the
cluster. One role is the headnode which sets up the configuration needed for the headnode
in the cluster. Another role is worker which performs all the setup unique to worker nodes
in the cluster. Other roles can define optional setups like using NFS or OrangeFS as the file
system.

Ansible works using modules that define an operation to be performed. The modules are
basically small programs that get copied to the target machine over an ssh connection and
then run to perform a task. There are many built-in modules to perform any common
action and custom modules can also be created. For example, the copy module is used to
copy files, the command module is used to run a shell command, and the apt module is used
to configure packages. The modules are smart and are only executed if there is a change
to be made. After running a module the result is “OK” when there was no change to the
system, “Changed” if a change was made to the system, and “failed” if the module execution
encountered an error. Playbooks are used to organize and script the modules to be run. The
playbooks are written in YAML which allows them to be stored in a format that is easy to
read. The output from running a playbook is helpful to know what is going on and what
has been changed. It also allows filtering on the target machines so that the playbook can
be rerun only on the machines that failed to run. The team uses Ansible scripts to setup all
of the nodes in the cluster and also to restart and shutdown the cluster.

Ansible was simple to setup and can be installed via either apt or pip. One caveat is that
the version found in pip is much newer than the one found in apt. The group had to switch
to newer version after modules we wanted were not available in the older version.

3.2.4 Security (LDAP)

One of the requirements for Slurm—and for most clusters—is to have a unified namespace
for users, groups, and home areas. The cluster needed a way to synchronize accounts and
to provide an easy structure for adding new users and groups. There are many ways to go
about setting this up.

The most straight forward way is to keep the local files synchronized across the cluster. This
can be done by writing scripts that will copy the /etc/passwd, /etc/group, etc. files to all
the other nodes when a new group or user is added. Although this method is easy to setup
and understand, it is limited in its flexibility and requires mass copy to be made any time
the users or groups change.

A second method involves using a centralized directory such as LDAP, Windows Active

14

Figure 15: LDAP Stucture

Directory, or SAMBA. With this method, a uniform namespace is provided in a central
directory and all users that sign in are authenticated by this directory. Using a centralized
directory allows for greater flexibility and power. Their main downside is the complexity in
setting up and the initial learning curve.

Of the possible methods, LDAP (Lightweight Directory Access Protocol) seemed to be best
choice. LDAP is the most commonly used in enterprise Linux environments and it is designed
to provide user and group data to systems. LDAP also allows changes to the users and groups
without having to change anything on the clients. After initial setup, LDAP is much easier
to use and allows easier changing of users and groups. There are also scripts that can be
easily installed to automate the adding, removing, and modifying of groups and users.

LDAP is a standard application protocol for accessing a distributed directory over the in-
ternet. There are multiple back end databases that can be chosen; however, to the protocol
the database structure is organized into tree structure with each entry in the tree having a
unique identifier or distinguished name (DN). Each DN is a child of another DN with the top
level being the database root. Each entry contains a set of attributes which defines the entry.
Entries in the directory have different types. Some are purely for organizing the directory.
Others represent POSIX groups or users. Figure 15 shows how the LDAP structure looks.
The tools for modifying the LDAP directory directly are cumbersome and only need to be
used to setup LDAP. Once setup, scripts can be used to automate all the commands needed
to change the users and groups. With the scripts, it is just as easy to use LDAP as it is to
use the built-in commands for users and groups.

There were a couple challenges in setting up LDAP. The main challenge was that there are
many tutorials available online making it hard to find a good tutorial that would work on
Raspberry Pi and set LDAP up as desired. In the end, parts of multiple tutorials were used
to create a method for setting up LDAP for the cluster.

Another challenge was adding LDAP users to groups that exist locally. To do this, a group
with the same name and GID needs to be added to LDAP, then the LDAP user can be
added to the LDAP group. Since the LDAP group has the same GID as the local group, the

15

groups are essentially the same and the user is in the local group. If the names of the local
group and the LDAP group are the same but the GID does not match, the groups will be
two separate groups even though they appear to be the same. This can be confusing since
users will not have permissions that it appears they should have.

3.2.5 File System

The Raspberry Pi cluster implemented in this study performs highly distributed parallel
computations across four cores of 64 processors and appears to the user as a single computer.
This cluster architecture, which behaves as a virtual supercomputer, is commonly known as
a Beowulf cluster. As with any computing system, the organization of data storage and
the control of data retrieval contributes significantly to the performance of the system. The
file system has the potential to drastically improve or impede system performance. The
highly parallel and distributed nature of the Raspberry Pi Cluster requires the file system
to be extremely efficient and consistently reliable in storing and retrieving data to gain
maximum performance. A wide variety of file systems exist and each one caters to distinct
properties. The desired properties of the file system to be implemented on this Raspberry
Pi Cluster included the ability to scale to larger clusters, demonstrate read and write speeds
of at least 100 Mbps on small and large files, provide access, replication, and concurrency
transparency to the clients, and to be compliant with MPICH. OrangeFS, GlusterFS, and
NFS were considered as possible options that would meet the desired properties necessary
for the Raspberry Pi Cluster. A brief discussion on the operational basics of each the three
file systems and why each was considered a viable options is provided below. A further
discussion as to why OrangeFS was the file system ultimately deployed on the cluster and
the challenges that were encountered while bringing the deployment of OrangeFS to fruition
follows.

Network File System (NFS)

Network File System (NFS) is a purely distributed file system protocol initially developed
for Sun Microsystems. It has since become the standard file system in traditional Unix-based
networks. Being purely distributed, the file system uses a protocol to access storage instead
of sharing block level access to the storage. This access can be restricted on both clients and
servers through the use of access control lists. Files are accessed using the same interfaces
and semantics as local files. NFS aims to be transparent in access, location, concurrency, and
failure while being heterogeneous and scalable. The most current version of NFS is NFSv4
which is designed to support clustered server deployments and has the ability to provide
scalable parallel access to files distributed across multiples servers.

Raspbian Jessie, the operating system on the Raspberry Pi, uses the standard Linux kernel
and is pre-installed with NFSv4. Thus, NFS only needed to be instantiated on the Raspberry
Pis to be the implemented file system. NFS required no installation and minimal setup to
become functional. Therefore, it was the first file system deployed on the first subset of
operational nodes from the cluster. The simplicity of the NFS setup allowed for application

16

development and power analysis to begin almost immediately. NFS was later benchmarked
using the IOR bench marking platform. The results are discussed later in this report.

OrangeFS (OFS)

OrangeFS (OFS) is an object-based file system with a client-server architecture such that
data is divided and distributed to one or more servers. These characteristics make it known as
a distributed and parallel file system. The object-based design provides a layer of abstraction
that further classifies it as virtual. OrangeFS is designed to focus on metadata and data
distribution as opposed to disk storage management. Files are stored in objects that can
be accessed in parallel and may reside on multiple servers. The servers provide a metadata
service and a data service within one process. The metadata service sends and receives
information about the directories and logical files in the network. The data service sends
and receives data for the objects stored on the server.[16] The computation/client nodes in
the cluster are configured with an interface designed to specifically communicate with the
servers. This interface finds the location of a particular file’s objects using the metadata
service and then accesses the file’s objects using the data service.

Figure 16: How OrangeFS Works
[16]

17

Figure 17: File in OrangeFS
[16]

OrangeFS was thought to be a viable option because it claimed to provide the sought after
access, location, and concurrency transparency, MPI-IO support, and the ability to scale
to large numbers of clients and servers due to it’s object-based, multi-server structure and
modular architecture. OrangeFS was well documented and claimed to have the ability to
implement Hadoop MapReduce without HDFS. Implementing the Hadoop Framework was
another goal for the Raspberry Pi Cluster in this study. For these reasons, OrangeFS was
chosen to be implemented on the cluster. After successful installation, it was benchmarked
using the IOR benchmarking platform. The results are discussed later in this report.

GlusterFS

GlusterFS is a distributed file system defined in user space. It eliminates metadata and
claims to scale linearly as the number of servers is increased. The functionality of GlusterFS
comes from it use of translators. Clients are stateless and do not communicate with each
other. GlusterFS relies on an elastic hashing algorithm rather than a metadata model.[7]
It was not determined if GlusterFS supports MPI-IO, as GlusterFS documentation was not
abundant. Due to time constraints and lack of reliable information, GlusterFS was only
researched and not implemented on the Raspberry Pi cluster.

Implementing OrangeFS

The implementation of OrangeFS on the Raspberry Pi cluster began before the cluster was a
fully functional system. The Raspberry Pi Cluster began as two distinct small clusters each
with one control node, eight worker nodes, and one storage node mounted to an external
hard drive. One cluster was labeled the development tower and the other cluster was labeled

18

the application tower. The entire implementation and testing of OrangeFS took place on
the development tower. While OrangeFS was in the initial stages of implementation, the
configuration manager, job scheduler, and directory access protocol were also in a develop-
mental state on the development tower as well. The development tower was also being used
for investigating network and power issues during this time.

The online documentation for the implementation of OrangeFS appeared to be straightfor-
ward so the team began following it by previewing the system requirements, security options,
and the OrangeFS configuration file. According to the OrangeFS 2.9 Documentation, the
OrangeFS build and server nodes require a Linux system and support the most common
Linux distributions. The installation of several nonstandard Linux software packages are
necessary for the build. The build will create the executable software to be distributed to
all the servers and clients. The OrangeFS client interface can be configured such that it
is compatible with several different operating systems including Ubuntu.[16] Based on this
information, it was thought the Raspbian Jessie operating system used by the Raspberry Pi
3 would be supported by OrangeFS as it is similar to Ubuntu. However, a quick internet
search of discussion forums revealed others had encountered issues compiling OrangeFS 2.9
on the Raspberry Pi. This caused some hesitation in the decision to implement OrangeFS,
but the appeal of OFS was so great it was decided to move forward with the implementation
in hopes a workaround could be found if we encountered an issue. Initially, a key-based
security scheme was chosen to be incorporated into the build of the file system.

First, the additional required packages were installed on the cluster and then an attempt to
build the executable software was made. The development tower’s storage node was chosen
to be the OrangeFS build node. More servers would be added if necessary after the initial
implementation on the development tower. The eight worker nodes on the development
tower were to be OrangeFS client nodes. After overcoming several challenges, which are
discussed in the following sections, the build on the storage node was ultimately a success.

As directed by the installation guide, the configuration file was generated with the OrangeFS
default settings using the executable pvfs2-genconfig program created during the build.
This interactive program walked the system administrator through the configuration settings
by asking for some basic information including the communication protocol, port number,
desired locations for the server to store the the data and metadata, and the location of the
log file.[16] A mount point for the external hard drive was created on the server node. The
location of the mount point was given to the configuration program as the location for the
storage of the data and metadata for OFS.

Before distributing the OFS executable software to the all the client nodes, an attempt to
run the server was made using the executable pvfs2-server program which took a required
parameter of the previously generated configuration file. This program created the storage
space for the server and started the server. The output messages from this executable
indicated the storage creation and server start was a success. The executable software and
configuration file was then distributed to the client nodes.

The client nodes were also successfully built and configured after working through some
minor challenges. A file was created on each of the client nodes to direct the file system

19

through the server URL to the configured location of the data and metadata storage on the
server. The executable pvfs2fuse, created during the build and located on each client, was
then run to start the client process and finally mount OrangeFS on each client. Once the
clients and the server were running, a few simple commands were run to ensure that the
file system was in fact operational. These tests confirmed that the clients were able to read
and write to the OrangeFS server. The final step before declaring the file system a success
was to add MPI-IO capabilities. The clients were then reconfigured to include the necessary
OFS configuration parameters to support the message passing interface. MPICH 3.2 was
also recompiled to enable linkage to the OrangeFS file system when compiling and running
applications.

Implementation Challenges

As we had found in our initial research, OrangeFS had difficulty compiling on the Raspberry
Pi. The first step in the installation required a Makefile be generated using a configure script
provided in the download. The configure script took several parameters which dictated where
the portable directory was to be located, the path to the Linux kernel, and the security
options to incorporate into the build.

The configure script successfully generated the appropriate modules and Makefiles necessary
to make and install the build, but when the make command was run, several of the make
modules failed to compile. The error messages indicated that there were errors in some
function calls located in the pvfs2-kernel.h and the pvfs2-utils.c files. After quite
some time and no successful workaround, the team reached out Dr. Walt Ligon and the
OrangeFS developers at Clemson University. We were told that currently the kernel module
for the clients could not be built on the Raspberry Pi because there were function calls
being made that were designed for Intel processors and not ARM processors. A possible
solution suggested by Dr. Ligon was to try using the FUSE client module to allow OFS to
work outside of the Linux kernel in userspace. The Clemson team did not claim this was
in fact a verified fix, but they believed it had a good possibility of working. Following Dr.
Ligon’s advice, we ran the configure script omitting the kernel directive. This cleared the
build errors and we were able to make and install the executable software to distribute to
the cluster without incorporating the Linux kernel module into the build.

The next steps of the installation, which included distributing the build directory to the
clients, running the configure script including the FUSE parameter, creating the OFS storage
space on the server, and running the server. This all succeeded with no error messages or
indication of failures. However, when mounting the OrangeFS file system by running the
pvfs2fuse command on the clients, an error message occurred indicating there was a failure
to initialize any BMI methods for the URL of the server and the protocol was not available.
This error message and the fact that the pvfs2-server command printed a message stating
it started lead us to believe the issue was with the client node configuration and not with
the server. Much time was spent working with the client node trying to resolve the error.
Eventually a deeper look into the server was made. It was discovered that if the -d flag
was set when starting the server with pvfs2-server command, the process stayed in the

20

foreground and printed messages to the terminal instead of running in the background and
printing messages to a log. This resulted in more informative messages which indicated
the server had not in fact started and had conflicts. The messages indicated there was no
ServerKey definition in the configuration file and the security module could not be initialized.
This was quite puzzling because prior to resolving the kernel module issue and building the
executable software, the choice to include security in OFS was foregone. The security option
had not been included in the build attempts for quite some time and the Make clean command
was run after every failed build attempt of the Linux kernel module. However, it appeared
that there was still a remnant from the key-based security scheme from weeks prior. To
resolve this issue, all OrangeFS files and directories were deleted from all the nodes and the
installation procedure was started fresh with no kernel module and no security options, but
with the FUSE option set. This allowed for the build node to build successfully, the server
node to create the storage space, the server process to start successfully, the clients to be
configured successfully, and the clients to mount to the OrangeFS file system through the
FUSE interface successfully.

The last step of declaring OFS a success on the development tower was to incorporate
MPICH into the build of the clients. The problem that occurred here was not so much with
OrangeFS, but with the initial setup of the cluster. It was thought the cluster was run-
ning MPICH and not OpenMPI. When testing the basic functionality of the newly compiled
MPICH configuration which enabled OFS, it was discovered that OpenMPI was inadver-
tently installed on the cluster during early setup and was set as the default message passing
interface. The update-alternatives command was run to change the default message passing
interface from OpenMPI to MPICH. After the update, the functionality of MPICH with Or-
angeFS was verified with a few very basic MPI commands. The implementation of OrangeFS
and MPICH were declared a successful implementation on the development cluster.

Several other challenges were encountered when OrangeFS was finally deployed on the full
64 node cluster. These challenges were more network based challenges and not OrangeFS
problems. The deployment of OrangeFS exposed the network problems and allowed suc-
cessful solutions to be implemented. The progression of events is discussed in the following
paragraph.

Testing the OrangeFS system had previously revealed that one storage node was sufficient
to allow the maximum throughput offered by 100 Mbps Ethernet when the cluster consisted
of only eight client nodes as shown in Table 8 and Table 9. However, when we scaled the
system to 64-four core client nodes, one storage server was no longer sufficient. A second
server node was introduced to the cluster. This server node had been previously configured
as a headnode on the development tower. This new server node was thought to have been
completely void of all previous headnode functions and reconfigured as only a server node.
However, a DHCP service some how remained active on this node and it was distributing the
same IP address to the storage device handling the NFS file system containing user accounts
and the initial OrangeFS storage device. Testing the performance of OrangeFS across all 64
nodes required access to both of the storage devices, allowing the conflict to expose itself.
This conflict caused the NFS storage node to fail on one occasion and the OrangeFS storage
node to fail on a second occasion, bringing the cluster to a halt each time. Once the cause of

21

the storage failures was discovered the resolution was to remove the second OrangeFS server
from the cluster to completely reimage and reconfigure it as a server node. This resolved the
issue.

3.2.6 Networking

All of the Raspberry Pis are connected to each other via an Ethernet switch. Each of
the devices needs and easy way to communicate with each other. There are two primary
methods to set up the IP addressing of the devices. The first approach is to assign each of
the Raspberry Pis with a static IP address. This method has low overhead but requires that
each Pi is configured individually by hand.

A second option is to use the Dynamic Host Configuration Protocol (DHCP) to assign IP
addresses dynamically. With this method, a DHCP server would run on the headnode and
it would assign an IP address to the clients when they are connected to the switch. The
DHCP server can be configured to assign a specified IP address to a certain MAC address.
Using this method of IP assignment allows all of the networking configuration to be handled
on the head node. It also makes adding new nodes much easier. When you plug in a new
node, the DHCP server provides it with an IP lease. By looking in the leasing file, the
MAC address of that device can be found. The desired IP address for that device can then
be specified in the DHCP configuration. This way that device will always be assigned the
same IP address. This configuration method is powerful when coupled with the hosts file.
The hosts files can map a name to an IP address. Using this method it is now possible to
reference all the nodes in the cluster by a human readable name instead of its IP address.
The DHCP method also makes it trivial to swap out compute nodes between clusters. Once
the DHCP configuration file is setup with the node’s MAC address, the node can be moved
around to different clusters and it will be setup with the correct IP address and it can be
accessed by its name in the hosts file.

In order to make the installation of packages easier on the worker nodes, it is also useful to
set up network address translation on the headnode to allow the worker nodes to connect to
the internet via the headnode.

In order to secure the cluster, the headnode is setup to only allow ssh connections from the
outside network. This protects all of the services running on the local network. Additionally
we have fail2ban[5] setup which will blacklist any IP address that fails to login 5 times.

3.2.7 Monitoring

In order to easily monitor the status of the Pis, a monitor GUI was created to display
information about the current status of the nodes in the cluster. A service runs on each of
the nodes collecting the data. Each of the monitor services sends status information to the
monitor Pi via UDP packets. Once collected on the Monitor Pi, the information is saved
to a comma separated value file (CSV format) where it can then be read and displayed in
the GUI. The GUI has been written using Python, Gtk and Glade which consists of two

22

pages. In the first page, the user is able to view the numeric values of different parameters
such as CPU temperature, CPU core voltage, CPU load, and CPU frequency of each node
as well as supply current and voltage of nodes equipped with daughter cards in addition to
the maximum and minimum of the aforementioned parameters. The second page consists
of a color-coded map of the above-mentioned parameters for all nodes so that the user can
have a better understanding of what is happening on all nodes in the cluster simultaneously.

Figure 18: Monitor GUI

Figure 19: Monitor Map

3.3 Standard Packages

(List of packages provided by default, dependencies for applications/frameworks)

23

• Vim

• MPICH2

• Xbox driver

• Libglew-dev

• Sshpass

• Libav-tools

• Libatlas-base-dev

• Libopenblas-base

• Libmpich-dev

• Gfortran

• Python-pip

• Python-dev

• Python-mpi4py

• Bison

• Flex

• libssl-dev

• gcc

• make

• libfuse-dev

• autoconf

3.4 Frameworks and Tools Development

3.4.1 Hadoop

Hadoop is a framework developed by Apache that is utilized for various types of processing
on large data sets. Hadoop is typically implemented by utilizing its own distributed file
system partition (HDFS) to increase bandwidth across a cluster. Hadoop is open-source
and contains four basic modules: Hadoop Common, HDFS, Hadoop YARN, and Hadoop
MapReduce. Hadoop Common is a set of libraries and utilities used by the other three
modules. Hadoop YARN manages the resources of the cluster, including job scheduling.
Hadoop MapReduce is a resource for parallel processing over the large data sets. Because
of Hadoop’s distributed nature, it was a clear choice of framework to install on the cluster
and run some example tests using MapReduce to determine Hadoop’s efficiency. Since there
were two different file systems that were undergoing testing at the same time, attempts to
install Hadoop were made on a small development cluster of eight nodes using the OrangeFS
file system and the main cluster of eight nodes using NFS file system.

Hadoop on NFS

During the installation of Hadoop on the NFS server, our group encountered several issues.
The version of Maven installed on the cluster had seemingly non-deterministic behavior,
failing to complete the installation on one attempt, but claiming a successful installation on
the next attempt when the trying to reacquire the error messages from the previous attempt.
After this “successful” installation, several key components of Hadoop were seemingly missing
from the installation, namely the configuration directories for all of the Hadoop Components.
Our attempts to recreate the configuration directories were unsuccessful, either through
reinstalling Hadoop or through copying a successful build from another system. Following
these unsuccessful install attempts, efforts were focused on installing Hadoop on OrangeFS.

Hadoop on OrangeFS

24

The OrangeFS client nodes can be configured to run Apache Hadoop version 1.2.1 or 2.6.0
in conjunction with the OrangeFS file system to replace Hadoop’s HDFS file system. The
OrangeFS documentation states the process of creating an OrangeFS-Hadoop client is four
steps: install system software, configure Hadoop to use OrangeFS, copy the client build
system software to the other clients, and then start Hadoop on the clients.[17] While seem-
ingly straightforward, the creation of OrangeFS-Hadoop clients has yet to be realized on the
Raspberry Pi cluster.

According to the OrangeFS community, for a file system to link with Hadoop, it must appear
as a file system native to HDFS, and the file system must provide a working implementation of
the org.apache.hadoop.fs.FileSystem class. To accomplish this, OrangeFS uses the abstracted
file system class found in MapReduce and a JNI shim found in the OrangeFS client.[17]
However, after configuring the OrangeFS client as instructed in the OFS documentation and
building the JAR file such that it contains the appropriate class definitions from the JNI shim
and distributing it to the other clients, Hadoop MapReduce fails. A Java exception is thrown
stating the org.apache.hadoop.fs.FileSystem class cannot be found. However, a search of the
file system produces the path to the class that is said to not be found. It is thought that
the HADOOP_CLASSPATH environment variable is being rewritten at some point during the
configuration process which ultimately results in an invalid class path and the class in fact
not being found or the system.xml file read by Maven is incorrect. A dependency issue also
occurred initially, but it was resolved after discovering the core-site.xml file was written
with an error in one of its properties. Time did not permit for the confirmation or elimination
of the redirection of the HADOOP_CLASSPATH environment variable or the exploration of the
system.xml file to be possible causes of the java exception.

3.4.2 TensorFlow

TensorFlow[4], an open source software library for numerical computation using data flow
graphs, is a newly developed tool by Google. It was developed mainly for the purposes of
conducting machine learning and deep neural networks research.

One issue with deep learning is that it needs a massive amount of data to train a good model,
which is time consuming. A typical example is a convolutional neural network (CNN). CNN
normally requires millions of images to converge to a good model. This process is done
through stochastic gradient descent, as there is no way to fit the enormous amount of training
data into memory and train the model. The training dataset is divided into small batches,
and the model is trained using one batch at at time.

Not only will the training dataset be too large to load or train at one time, the model
itself will potentially be too large to fit on a single machine. One characteristic of deep
learning is to exploit the “depth” of the model to extract more meaningful features to perform
computer vision-related tasks. For example, the latest residual network would have over 10
million parameters to train with 1,001 layers, and the deeper the network goes, the more
parameters will have to be trained. It is entirely possible that a single machine cannot fit
all the parameters, especially considering the hardware limitations of the Raspberry Pi. It

25

is therefore necessary to consider a distributed structure of the model in the future, but
our immediate focus is on “data parallelism”, i.e., one single node can handle the entire
model. There are several ways to train a deep learning model on a distributed system. The
simplest approach is to share all the model parameters across all workers while paralleling
data and gradient updates. In a synchronized fashion, batches of data are used to train the
model simultaneously. The update on the parameters are averaged based on all the working
nodes for one iteration; while in an asynchronized fashion, every worker node will update
the parameters of the model once it finishes the training process. Thus the asynchronized
approach is more flexible comparing to its counterpart.

By using GRPC as the communication protocol to perform the message passing, Distributed
TensorFlow is able to pass messages and updates. The distributed TensorFlow model nor-
mally consists of parameter servers and workers, among which parameter servers store the
parameters of the model while workers perform the computationally intensive tasks.

The asynchronized approach based on LeNet as seen in Figure 20 was implemented, con-
taining two convolution layers, two pooling layers, and two fully connected layers.

Figure 20: LeNet Structure

The dataset used was the famous MNIST dataset which is used for handwritten number
recognition. Slurm was used to manage node resources. Because TensorFlow needs to
specify the specific nodes for specific task (ps or worker), the nodes were hard-coded in the
script to make sure each task ran on its designated node.

3.5 Applications Development

3.5.1 SPH

Provided by the Tiny Titan project at ORNL were several demonstration applications, the
first of which is the Smoothed Particle Hydrodynamics (SPH). This application performs a
distributed fluid dynamics simulation with user input providing perturbations in the system.
One node performs rendering and task distribution, while the remaining nodes perform the
particle interaction calculations. Parameters including gravity, viscosity, density, pressure,
and elasticity are configurable inside the application, while parameters like the number of
nodes used and the size and count of particles can only be configured in the source code.

26

The application has been altered from its original state to compile and run under BOB’s
cluster configuration without errors or warnings. MPICH provides the MPI support between
workers and the master node, while Slurm handles node allocation and reservation. One
major consideration when adapting SPH to BOB was that of the master node. When using
Slurm under normal conditions, all requested nodes are from the pool of worker nodes.
However, SPH requires access to both input peripheries and a display for the user. Most
cluster nodes would not have access to these utilities, so a launch script manages a Slurm
job allocation call for N nodes, manually launches the SPH executable across N + 1 nodes
where the final node is the host node itself, and cleans up the Slurm allocation and local
files. This workaround allows the host node’s peripheries to be used at the same time as
Slurm’s reservation.

3.5.2 PiBrot

Another application provided by the Tiny Titan project is the parallel Mandelbrot set race
(PiBrot). This application demonstrates the relative speedup that running an application
can achieve when running a process in a massively parallel manner. When given N nodes,
one node is assigned the MPI rank of 0 and handles the communication and rendering of
an image of a Mandelbrot set by the worker nodes. One node computes the set on its own,
relaying the information to the master node to be rendered on the left side of the screen. The
remaining N−2 nodes perform the same calculation in parallel, relaying their set information
to the right side of the screen. Due to bandwidth and CPU power limitations, the number
of lines that can be rendered per second limits the operation speed of the cluster, but the
relative speed is still clear as the right side of the screen fills roughly N −2 times faster than
that of the left side.

Similar to SPH, PiBrot was designed to be run on the original Tiny Titan cluster. As a
result, the same workaround must be used to allow both PiBrot and Slurm to work together
to provide the visuals for the user. Additionally, the launch script for PiBrot includes the
ability to specify the number of nodes to use for the calculation, which allows for easy
comparison between a varying number of parallel processes.

3.5.3 Parallel Pi

The degree to which the mathematical constant Pi can be accurately calculated is often
used to demonstrate the performance of modern computers. One of the simplest methods
of approximating the value of Pi is through the use of a convergent series. This method is
particularly applicable to the testing of BOB because subsections of the chosen summation
can be assigned to any number of available worker nodes in parallel, as the resulting sum of
each subsection is independent of the others. Therefore, each worker node should be able to
simply compute the sum of their subsection and return the result to the master node, where
all results are then summed for a final approximation of Pi. If the cluster is operating as
intended, a linear increase should be observed in runtime performance of the approximation
as the number of available worker nodes increases.

27

Initially, BOB’s Pi approximation application utilized the Leibniz formula for calculating Pi:

π = 4
∞∑
i=0

(−1)i

2i+ 1

However, the formula converges extremely slowly, requiring the processing of billions of terms
to achieve a correct approximation of only 10–12 digits. Eventually, the Bailey-Borwein-
Plouffe formula, originally discovered by Simon Plouffe, was chosen to replace the Leibniz
formula due to its much faster convergence rate.

π =
∞∑
i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
The BBP formula, in combination with Python’s decimal module, which allows users to
specify floating-point precision, resulted in an approximation of Pi that was accurate to
thousands of decimal places in a fraction of the time required for Leibniz. Performance
results will be discussed in detail in the Testing and Results section below.

3.5.4 Monte Carlo Simulations

A Monte Carlo simulation is a method of running an application or program with random
(pseudo-random) values for a variable (or set of variables) in order to produce and analyze
results. This type of simulation is useful for many applications, specifically for those in
physics and mathematics which involve probabilistic variables. The Monte Carlo application
was developed at the request of a faculty member who wished to run an input model in
parallel in order to obtain an output set much faster than running the same model on a
single processor. The application can be run from either the command line or a supporting
GUI and allows the user to specify the input model, total number of runs, number of nodes,
and maximum run time. The application supports models written in C/C++ and Python
at this time.

GNU Parallel

Initially, GNU Parallel was installed in order to launch a single Monte Carlo job to run
each task in parallel. GNU Parallel works with SLURM to handle any interrupts during the
runs, as well as appropriately assign jobs to nodes. The idea was that one script could be
created based on the user’s input parameters, and using GNU Parallel, a single command
could parallelize and manage all iterations. Although this seemed to be a straightforward
approach, it failed to work properly during testing. For example, a batch script was created
invoking the parallel function from GNU Parallel, but after the script would run once
properly for a user, it would then not work again. In fact, all scripts invoking GNU Parallel
afterwards would no longer work for that user. An example of this script is shown below. It
should also be noted that in the testing of this method, errors occurred from the Perl code
present in this script. The Raspberry Pis were all using the Great Britain language packages

28

which were the default settings during setup. Therefore, the United States standard unicode
had to be updated across all nodes.

#!/bin/bash
#SBATCH -n 12
#SBATCH -o ot.txt
#SBATCH -t 12:00:00

srun="srun -n1 -N1 --exclusive"
parallel="parallel --delay 1 -j 30 --joblog test.log --resume"
$parallel "$srun ./a.out"

Figure 21: An Example of a Batch File Using GNU Parallel

Multiple Runs in Single Batch File

Rewriting the Monte Carlo application to create multiple runs in a single batch file is the
current solution to the GNU Parallel issues. This implementation divides up the total number
of runs into chunks according to the number of available cores, creates an srun call per chunk,
and then submits the file as a job. Each srun appends output to a single file utilized by all
batches specified with the --output flag. This is the same file that the user specifies either
on the command line or in the GUI for output. The output file and the standard error file
will be stored in the same directory that the script is submitted. An example of a batch
file which runs 100 simulations on 8 CPUs is shown below. While this method seems more
brute force than the GNU Parallel solution, SLURM should still manage any interrupts. The
output file will see no race conditions between srun calls because the previous srun will end
before the next one is started. This would have been an issue if multiple batch files were
created to append to the same output file.

29

#!/bin/bash

#SBATCH -N 8
#SBATCH --job-name=montecarlo_dice_roll
#SBATCH --output=dice_output.txt
#SBATCH --open-mode=append
#SBATCH --cpus-per-task=1
#SBATCH -e montecarlo_dice_roll_err.txt
#SBATCH --time="00:00:30"

srun -n 4 python dice_roll.py
srun -n 32 python dice_roll.py
srun -n 32 python dice_roll.py
srun -n 32 python dice_roll.py

Figure 22: An Example of Multiple Runs in Single Batch File

3.5.5 Numeric Integration

In mathematics, a simple way to estimate the area under a curve is to use Riemann sums.
Riemann sums divide up a specified section of a function’s domain by a set width and use
rectangles to calculate sections of the total area. There are several types of Riemann sums:
left, right, and middle. Examples of each type are shown below in Figure 23. Riemann
sums can be easily parallelized because each subsection of the domain can be given to a
different node which can then calculate that section’s area. The master node can then sum
the results from each node to produce a final total for the area. The numeric integration
program on BOB utilizes right Riemann sums, though this could easily be adapted to left
or middle by changing what x value is passed to the function during area calculation. The
following steps show how the Numeric Integration application functions in more detail.

1. User inputs function, domain, and # samples.

2. MPI gets # available cores. Parallelization begins after this step.

3. Width of each rectangle is calculated.

4. Domain start and end points for the previous rectangle calculated for current core.

5. Areas are calculated for each sample in current core.

6. MPI sums and reduces all areas into one variable.

7. Error is calculated using scipy.integrate.quad().

8. Results are displayed to stdout.

The challenges for this implementation were few since it is a short and straightforward
program. Ensuring that the correct libraries were installed across all nodes on BOB was the

30

only obstacle, which was easily fixed. It should be noted that this program was adapted from
the riemann-parallel.py Numeric Integration application listed on TinyTitan’s GitHub
page (https://github.com/TinyTitan/Numeric-Integration).

Figure 23: Riemann Sums

3.5.6 DANNA Evolutionary Optimization

DANNA, or Dynamic Adaptive Neural Network Array, is a neuromorphic computing archi-
tecture developed by the University of Tennessee.

Neural networks are too complex to feasibly be programmed by hand. DANNA uses evolu-
tionary optimization to find solution networks to problems.

The input neurons and output synapses are affixed a priori, and then a population of ran-
domly programmed networks is generated. For a given application, a set of training instances
are executed on each network in the population, and the success of each network is quantified
by a fitness function. The best networks are then chosen from the population, and used to
generate the next population via mutation and crossover operations.[14]

To run on multiple nodes, each node has to be a sub-population, sharing the best networks
they find with each other. With multiple nodes running EO, one may search the solution
space much faster and find a solution network faster.[20]

3.5.7 Fire Dynamics Simulator (FDS6 by NIST)

Fire modeling and fluid dynamics simulations are traditionally intensive computing appli-
cations due to the large nature of both the physical structures, such as whole houses or
buildings, and the fluid dynamics calculations of fire flow. Because of this, new computing
methods and architectures are worth looking into to determine whether the complexity can
be lessened in order to reduce run time, particularly in situations where time is a factor, like
life-threatening circumstances or lawsuits.

31

https://github.com/TinyTitan/Numeric-Integration

The National Institute of Standards and Technology (NIST) has developed an open source
fire simulation software fire dynamics simulator (FDS) which reduces computational and time
complexity by using a technique which divides sections of the computation into meshes. A
mesh is a section within a domain, e.g. a room or building, that is made up of rectilinear
volumes. Then each mesh is divided into cells, the number of which depends on the specified
resolution for the simulation. (FDS User Guide) Each mesh can then be assigned to multiple
processors in parallel, which can significantly reduce the execution time necessary to create
a complete model. The figure below shows previous research performed by C. Salter from
Hoare Lea with an FDS benchmark over multiple cores on Amazon’s EC2 cloud computing
resources.

Figure 24: Results of bench1.fds Using OpenMP (on AWS) from Salter[19]

“This shows that, in general, as you add more cores, the time taken to run the model
decreases, something that is validated by the modeling conducted by the developers of, as
discussed earlier. The developers state that the time taken decreases by about 50% with
about four cores for the model. There is a point reached where the addition of more cores
actually increases the time taken to run the model - this can clearly be seen in the case of
the m3.large instance, where the addition of a second core actually decreases the speed.”[19]
The results from Salter are consistent with other parallel models unrelated to FDS, thus this
became an expectation of the Raspberry Pi Cluster’s FDS runs and research.

This portion of this project builds upon the work put forth by Donald Collins in his master’s
thesis for The University of Tennessee at Knoxville.[3] Collins’ research focused on ways
in which FDS modeling work could be efficiently and quickly distributed across multiple
processing cores. His work included a Python script to evenly divide a single mesh into
multiple meshes for insertion into an FDS file. The usage and functionality of this script is
expanded upon in the appendix provided with this paper. Fundamentally, his work allowed
for one complex task to be subdivided for execution in a parallel environment, ideal for an
application on BOB.

32

3.5.8 HPL - High Performance Linpack

HPL (High Performance Linpack) is a benchmark to determine the maximum double preci-
sion floating point performance on a distributed parallel system. It solves a random dense
linear system Ax = b with LU decomposition, and after the calculation, it checks the ac-
curacy to ensure a valid result. Dense linear algebra calculations are applicable to many
problems and a good method to measure peak performance for a system.[9]

HPL requires an MPI and BLAS library. The BOB system is using MPICH2 for message
passing and OpenBLAS as the linear algebra library. OpenBLAS was selected over some
alternatives due to its high performance on ARMv7 CPUs. In this case, OpenBLAS resulted
in nearly an order of magnitude higher performance than ATLAS for the Raspberry Pi 3
SoC.

The Raspberry Pi 3 utilizes a Broadcom BCM2837 SoC with a quad core ARM Cortex A53
CPU clocked at 1.2 GHz.[18] This CPU supports VFP and NEON instructions to accelerate
the processing of vector floating point instructions. BOB’s OpenBLAS configuration is using
the VFP unit for the calculations because the ARMv7 NEON unit is not IEEE floating point
compliant.[2]

3.5.9 HPCG - High Performance Conjugate Gradient

HPCG, or High Performance Conjugate Gradient, is a newer benchmark designed to be used
in conjunction with HPL to provide a more complete picture of the performance of a cluster.

Like HPL, HPCG solves Ax = b. However, HPCG uses a sparse matrix representation
using an iterative conjugate gradient method rather than LU decomposition. The end result
of these changes is a benchmark which tries to capture lower bound performance rather
than peak performance. Using both HPL and HPCG, one can characterize the upper and
lower bounds for typical cluster applications. Most programs will not achieve HPL levels of
performance, but most programs will also be able to extract more performance than HPCG.
This makes the combination of the two especially valuable when evaluating the performance
of a cluster system. [8]

4 Testing Results

Testing results for the cluster’s overall computational power, file system performance, net-
work performance, and application-specific performance are discussed in the following sub-
sections. A general trend to observe is that scaling performance of applications with intensive
I/O is artificially constrained by the Raspberry Pi’s 100 Mbps Ethernet, a major concern
since the beginning of the system’s construction. For embarrassingly parallel tasks with little
required I/O, however, scaling results are in line with what we would hope to see in such
a distributed system, with a diminishing return in performance per node only becoming a
significant factor when a large collection of worker nodes is utilized.

33

4.1 HPL Benchmark Results

HPL is a ubiquitous benchmark in high performance computing, and as such, it serves as a
useful comparison point to demonstrate the performance of this cluster against other systems
throughout history.

Each worker node consists of a Raspberry Pi 3 which uses a quad core ARM Cortex A53 CPU.
In the cluster, each core is clocked at 1150 Mhz. Assuming the Cortex A53 demonstrates
similar floating point performance as the Cortex A9 core, the theoretical maximum floating
point throughput can be estimated. For double precision (64 bit) FP values, the CPU
can execute a scalar addition every cycle and a scalar multiplication over every two cycles.
This can be summarized as about 1.5 FLOP/cycle. Using this information, it is possible to
calculate a Rpeak for both each node and the overall cluster.

Rpeak,node = 1.5FLOPs/Hz/core× 4 cores× 1150Mhz = 6.9GFLOPs

For the cluster, the Rpeak is simply the single node maximum scaled to 64 total nodes.

Rpeak,cluster = 6.9GFLOPS× 64 nodes = 441.6GFLOPs

However, this estimation is unrealistic. While the single node performance can come within
4% of the theoretical value, the cluster cannot achieve perfect scaling due to communication
overhead.

The current Rmax is 148.8 GFLOPs which places the cluster as the fastest supercomputer
in the world in November of 1994. This is also good enough to be one of the Top 500
supercomputers in June of 2002.

Some values for throttled operation are provided as a comparison point. It is important
to note that the performance is not necessary half of the full speed performance as the
number of nodes increases beyond a single node. This is because of the high overhead of
MPI calls when constrained to a low bandwidth interconnect. While the parallel compute
performance might be doubled by doubling the frequency, the network communication time
is a constant factor and unavoidable with the design of the Raspberry Pi. The scaling
efficiency numbers also appear to be greater as a result of the increased ratio of computation
speed to communication speed when throttled.

Nodes N NB Time (s) GFLOPs Scaling Efficiency
1 10000 256 184.33 3.618 100%

4 20000 256 553.70 9.633 66.6%

8 28000 256 968.21 15.12 52.2%

16 38000 256 1278.98 28.60 49.4%

24 48000 256 867.97 42.93 49.4%

32 55000 256 2024.93 54.78 47.3%

40 64000 256 2611.28 66.93 46.2%

Table 1: HPL Performance when throttled

34

Nodes N NB Time (s) GFLOPs Scaling Efficiency
1 10500 100 115.96 6.657 100%

2 15000 100 246.13 9.143 68.7%

4 21000 100 453.73 13.51 50.7%

8 30000 100 694.20 25.93 48.7%

16 42000 100 1093.02 45.61 42.8%

24 51000 100 1339.88 66.00 41.3%

32 59000 100 1592.44 85.98 40.4%

40 66000 100 1906.13 100.6 37.8%

48 73000 100 2153.39 120.4 37.7%

56 76000 100 2242.90 130.5 35.0%

64 80000 100 2412.44 141.5 33.2%

Table 2: HPL Performance at 1150 Mhz—Open Air

Nodes N NB Time (s) GFLOPs Scaling Efficiency
1 10500 100 125.21 6.165 100%

2 15000 100 266.35 8.449 68.5%

4 21000 100 409.25 15.09 61.2%

8 30000 100 682.86 26.36 53.4%

16 42000 100 1117.47 44.20 44.8%

24 51000 100 1357.19 65.16 44.0%

32 59000 100 1626.52 84.18 42.7%

40 66000 100 1890.25 101.4 41.1%

48 73000 100 2131.70 121.7 41.1%

56 79000 100 2454.77 133.8 38.8%

64 84000 100 2655.07 148.8 37.7%

Table 3: HPL Performance at 1150 Mhz—Enclosure

35

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

Number of nodes (4 threads per node)

P
er
fo
rm

an
ce

(G
F
LO

P
/s
)

Figure 25: HPL Performance at 1150 Mhz—Enclosure

It should be noted that when comparing Table 3 showing results from the enclosure to
Table 2 showing result from open air testing there is a dropoff in performance primarily
seen at the single node data point. This appears to be due to some isolated thermal throt-
tling causing by sub-optimal airflow in the new enclosure. This issue is masked at higher
node counts because the communication overhead is significant. The communication time is
constant regardless of computation time, and the communication time allows for a period of
lower CPU utilization allowing the nodes to cool somewhat.

4.2 HPCG Benchmark Results

As HPCG is not an attempt to capture maximal floating point throughput, it should be
noted these numbers are expected to be much lower. However, contrary to HPL, the scaling
factor is both quite linear and nearly optimal.

36

Nodes GFLOP/s Scaling
1 0.08402 100.00%

2 0.16824 100.12%

4 0.33422 99.44%

8 0.65953 98.12%

16 1.30178 96.83%

24 1.90108 94.27%

32 2.55881 95.17%

48 3.77325 93.56%

64 5.07949 94.46%

Table 4: Reference Implementation HPCG Performance

0 10 20 30 40 50 60
0

1

2

3

4

5

Number of nodes (4 threads per node)

P
er
fo
rm

an
ce

(G
F
LO

P
/s
)

Figure 26: Reference Implementation HPCG Performance

Figure 26 demonstrates the linear scaling of HPCG from a single node to 64 nodes on BOB.

4.3 File System Benchmark Results

The Raspberry Pi 3 cluster began as two distinct clusters consisting of one control node, one
storage node, and eight worker nodes all networked over 100 Mbps Ethernet. One cluster
was used for systems development/testing and the other was used primarily for application
development. After the initial build of both clusters, NFS was implemented to handle the

37

file system servicing on the application cluster and the development of the implementation
of OrangeFS was devoted to the development cluster.

An initial benchmark of NFS was completed by testing the sequential read and write times
of both the local SD card and the NFS storage device on the application cluster as soon as it
became functional. The benchmark was performed by utilizing the Linux utility dd on one
client node. For testing write performance, the following command was used:

$ dd if=/dev/zero of=tempfile bs=1M count=1024 conv=fdatasync,notrunc

For testing read performance, the file created by writing after clearing the cache was used
by executing the following commands:

echo 3 > /proc/sys/vm/drop_caches
$ dd if=tempfile of=/dev/zero bs=1M count=1024

System Tested Sequential Read Sequential Write
Local SD Card 22.6 MB/s 10.8 MB/s
NFS Drive 11.2 MB/s 10.1 MB/s

Table 5: Sequential Single Node NFS Storage Performance

After successful implementation of OrangeFS with eight FUSE clients and one server node
on the development tower, OrangeFS was benchmarked using the Interleaved Or Random
(IOR) benchmark. IOR is designed to measure POSIX and MPI-IO performance on parallel
file system I/O performance. IOR, developed by Lawerence Livermore National Lab, is a
parallel program that performs reads/writes from/to files under several sets of conditions and
reports the throughput rates.[10] The IOR benchmark test was used in this study for two
reasons. First, to show that OrangeFS was in fact operating correctly by writing and reading
large files to and from the server/storage node, and secondly, to show the I/O read/write
performance of the cluster was enhanced by implementing OrangeFS as an alternative to
NFS on the Raspberry Pi3 Beowulf Cluster. The IOR benchmark used on the Raspberry

Pi3 Cluster was modeled after the IOR NERSC-8 /Trinity Benchmark used by the National
Energy Research Scientific Computing Center(NERSCS) to test sequential and parallel I/O
performance.[26] This benchmark runs 2 sets of 3 POSIX tests and 2 sets of 3 MPI-IO
tests for a total of 12 tests. One set of POSIX tests and one set of MPI-IO tests measure
throughput on one shared file and the other sets measures throughput one file per process.
All 12 tests use fixed block sizes of 1MB, a fixed user-defined segment count, and three
different transfer sizes of 10KB, 100KB, and 1MB. The segment count dictates how many
data sets will be contained in each file. This value needs to be declared in such a way that it
ensures the IO benchmark files are not written to the client’s local DRAM and is calculated
such that the aggregate file size is at least 1.5 times the size of the available DRAM on the
client.

Aggregate File Size = segment count ∗ block size ∗ number of processes

38

The IOR benchmark throughput values recorded and discussed in this report came from
running a subset of the IOR N8/Trinity Benchmark[10]. 8 nodes implementing NFS on the
application tower and 8 nodes implementing OrangeFS on the development tower of the
Raspberry Pi3 Cluster were used to run the set of POSIX tests designed for one file per pro-
cess of the IOR N8/Trinity Benchmark. 8 nodes implementing NFS on the application tower
were used to run only the 10KB transfer size MPI-IO test for one file per process from the
IOR N8 Trinity Benchmark. 8 Nodes using OrangeFS on the development tower were used
to run the full set MPI-IO tests for one file per process using the IOR N8/Trinity Benchmark.
The entire set of one file per process POSIX tests of the IOR N8/Trinity Benchmark was
used to three times on the full 64 node Raspberry Pi3 Cluster after final integration of all
hardware and systems, including OrangeFS. Once using 64 nodes implementing NFS, once
using 64 clients and one server implementing OrangeFS, and a final time using 64 clients
and two servers implementing OrangeFS. The segment count was set to 188 when testing 8
nodes and 23 when testing 256 nodes to create an aggregate file size of approximately 5.6
GB in all recorded tests. The sets of shared file tests were not run to expedite the testing
process. The results of the various tests are discussed and shown below.

10KB MPI-IO Transfers, NFS vs OFS

File System Read Write
NFS 4.21 11.40

OFS 11.67 9.79

Table 6: MPI-IO Read and Write Rates (MB/s)

Table 6 displays the results of running the MPI-IO one file per process IOR N8/Trinity
benchmark test with 10 KB transfers on NFS with no attribute caching(noac) enabled and
OFS with OrangeFS default configurations and one server. This test was completed because
NFS fundamentally does not work with MPI-IO by default but can be manipulated to
work with MPI-IO by enabling no attribute caching. This feature requires that no file
attributes are cached locally and all file attributes must be retrieved from the server. With
this feature enabled, system performance is significantly decreased due to the increase in
network overhead as verified in Table 6.

8 Node MPI-IO OrangeFS Test

Xfer Size OFS Reads OFS Writes
10 KB 11.67 9.79

100 KB 11.10 11.30

1 MB 10.44 11.65

Table 7: OFS MPI-IO Read and Write Rates (MB/s)

Table 7 displays the throughput of MPI-IO calls on OrangeFS while running the one file per
process IOR N8/Trinity benchmark test set on eight clients nodes and one server using the
default OrangeFS configurations. This test was used to verify OrangeFS was functional for
MPI-IO calls. This test was also used to determine the capability of OrangeFS throughput
under OrangeFS default configurations with one server and eight clients of the Raspberry

39

Pi3 cluster. Table 7 shows that OrangeFS was not only functional for MPI-IO calls, but
was achieving the theoretical maximum throughput rates of 11 MB/s possible for 100 Mbps
Ethernet. This confirmed the belief that OrangeFS would perform better then NFS when
making MPI-IO calls.

8 Node NFS vs OFS POSIX Test

Xfer Size NFS Read OFS Read
10 KB 10.41 10.78

100 KB 9.16 11.46

1 MB 9.65 11.12

Table 8: Read Rates (MB/s)

Xfer Size NFS Writes OFS Writes
10 KB 11.42 9.73

100 KB 11.25 11.31

1 MB 11.34 11.44

Table 9: Write Rates (MB/s)

The amount of performance gain OrangeFS may provide as well as its functional ability on
POSIX operations was still in question, so the one file per process POSIX test set of the
IOR N8/Trinity benchmark was run on the development tower of eight clients and one server
implementing OrangeFS under its default configurations and the application tower of eight
nodes and one server running NFS under its default conditions. In Table 8 and Table 9, it
can be seen that overall OrangeFS outperformed NFS in both reading and writing from and
to the server using POSIX calls. The 10 KB transfers on OrangeFS writes did not exceed
NFS performance. This is expected as NFS should outperform OrangeFS on smaller files
and only one server. This test also showed that OrangeFS achieved the theoretical maximum
throughput of 11 MB/s for 110 Mbps Ethernet. These results allowed the team to conclude
that OrangeFS would enhance the performance of the Raspberry Pi3 Cluster using POSIX
operations assuming the performance results scaled.

64 Node and One OrangeFS Server POSIX Test

Xfer Size NFS OFS
10 KB 8.4 5.64

100 KB 8.7 6.96

1 MB 8.5 7.85

Table 10: Read Rate (MB/s)

Xfer Size NFS OFS
10 KB 11.59 10.05

100 KB 11.57 11.51

1 MB 11.64 11.54

Table 11: Write Rate (MB/s)

OrangeFS was initially deployed on the full Raspberry Pi3 cluster exactly as it had been
deployed on the development tower using only one server node. The results shown in Ta-
ble 10 and Table 11 indicate that the high OrangeFS read throughput did not scale to 64
nodes as hoped. The throughput rate for reads using the OrangeFS default configurations
and one server provided approximately half the throughput rates as seen on the eight node
development cluster.

64 Node and Two OrangeFS Servers POSIX Test

Xfer Size NFS Read OFS Read
10 KB 8.4 11.79

100 KB 8.7 8.93

1 MB 8.5 10.18

Table 12: Read Rate (MB/s)

Xfer Size NFS Writes OFS Writes
10 KB 11.59 15.85

100 KB 11.57 21.73

1 MB 11.64 20.81

Table 13: Write Rate (MB/s)

40

“OrangeFS is designed to run on large clusters, composed of many storage nodes networked
together”[16], so adding a second storage node to allow OrangeFS to run as it was designed
seemed like the easiest and most logical way to achieve the performance seen on the eight
node tower. The initial Raspberry Pi3 cluster design included two storage nodes. Therefore,
adding a second storage node to the cluster would not violate the design requirements and
it allowed OrangeFS to operate as it is intended with multiple servers.Table 12 and Ta-
ble 13 demonstrates that adding a second server allowed OrangeFS to achieve comparable
throughput results to the eight node development tower on reads and exceeded throughput
results on writes.

4.4 Networking Benchmark Results

Networking is a critical aspect of any cluster. In the case of BOB, the networking performance
is severely limited in comparison to other clustered systems due to the hardware utilized.

In order to examine the networking performance of the system, we used a utility called
iperf to determine the node-to-node TCP (Transmission Control Protocol) throughput. In
addition, the networking performance is indirectly tested with each parallel application as
the message passing performance is a key aspect of many applications.

Node Type # Threads Destination Throughput (Mbit/s)
Worker Node 1 Head Node 94.1

Worker Node 2 Head Node 94.1

Worker Node 4 Head Node 94.1

Table 14: Single Node, Threaded Network Performance

In Table 14, it can be seen that the number of simultaneous threads attempting to com-
municate does not negatively impact the aggregate TCP networking performance.

Nodes Destination Per Node (Mbit/s) Aggregate (Mbit/s)
1 Head Node 94.1 94.1

2 Head Node 47.1 94.2

4 Head Node 23.58 94.3

8 Head Node 11.8 94.4

16 Head Node 5.91 94.62

24 Head Node 3.95 94.85

32 Head Node 2.98 95.23

Table 15: Multiple Node Internal Network Performance

Table 15 demonstrates the networking performance when multiple worker nodes attempt
to communicate with the head node. The aggregate throughput meaning the sum of the

41

throughput achieved on each node tested. The per node throughput reported is the average
of the results from each node tested.

Node Type # Nodes Destination Aggregate Throughput (Mbit/s)
Head Node 1 com1598 190

Worker Nodes 1 com1598 93.7

Worker Nodes 2 com1598 93.3

Worker Nodes 4 com1598 93.6

Worker Nodes 8 com1598 94.3

Table 16: External Network Performance

Table 16 demonstrates the throughput available to both the head node and the worker nodes
when trying to communicate with a system external to BOB. The destination system acting
as the iperf host (com1598) is another system on the UT network attached via Gigabit
Ethernet. From this experiment, it can be seen that there is practically no performance
dropoff due to the low overhead of the head node’s NAT system.

Additionally, the head node is able to achieve higher performance due to its USB to Gigabit
Ethernet interface. This USB NIC cannot run at a full gigabit due to the limited maximum
throughput of the USB 2.0 and the hardware architecture of the Pi. It can, however, achieve
higher throughput than the internal NIC on the Pi 3.

4.5 Applications and Frameworks Benchmark Results

4.5.1 SPH

As a demo program, SPH was designed to allow users to adjust the number of nodes in
use to affect the frame rate of the simulation’s rendering node. However, the program was
originally designed for the original Raspberry Pis used by the Titan Titan cluster, which
have far fewer and less powerful nodes. The Raspberry Pi 3s that were used by our cluster
had double the clock speed and has four times as many cores.

As a result of the increase in power, our cluster was able to maintain sixty FPS on a single
core at the default particle configuration. By increasing the number of particles, we were
able to achieve a slight drop in frame rate only when not using the smoothed fluid view (i.e.
using the individual particle render option). However, when run across multiple nodes as
intended, SPH was unable to achieve a loss in frame rate until the stability of the simulation
was compromised. Increasing the default particle count from 1,500 to 10,000, the frame rate
would begin to drop as fewer nodes were utilized. Unfortunately, the physics calculations
themselves began to fail, as the increased particle density forced some particles inside others,
resulting in erratic behavior. Examples would typically include fluid particles bouncing out
of and across the surface of the fluid without any external influence as well as particles that
were forced outside of the bounding box of the simulation.

42

4.5.2 PiBrot

PiBrot is the second demo program adopted from the Tiny Titan project. The performance
of the rendering node is, seemingly, entirely dependent on the network. Regardless of the
number of nodes utilized in the race, the entire simulation runs in approximately the same
length of time. The master node is forced to read each line from the fractals across the
network individually and then re-render the entire screen. Due to this, the worker nodes are
able to perform the Mandelbrot Set check for their rows much quicker than the master node
can render them to the user.

As a result, the number of rows rendered per second is essentially a fixed value, with the
distribution of these rows varying based on the number of nodes used for the parallel portion
of the code. With a total of four nodes, the master node renders the right side approximately
twice as fast as the left side, resulting in half of the left screen rendered when the right side
finishes. When doubling the number of nodes used in parallel is doubled (i.e. N = 6 instead
of N = 4), the left side will only have completed a quarter of the screen when the right side
finishes. Since the interconnect bandwidth and re-render times are already a bottleneck for
the simulation, the relative time to completion scale nearly linearly with the nodes on the
right while the overall time to completion of both sides of the screen remains stable.

4.5.3 Parallel Pi

Parallel Pi results were obtained from test runs using between 4 and 256 parallel processes,
with each test using twice the number of processes of the previous test. As the division of
the series into roughly equal subtasks is considered embarrassingly parallel, positive scaling
results were anticipated. Test results are presented in the following graph. Please note that
the x-axis is scaled logarithmically.

43

22 23 24 25 26 27 28
0

100

200

300

400

Number of processes (4 per node)

T
im

e
(s
)

Figure 27: Parallel Pi Scaling Results

As can be seen from the results above, a diminishing return in speedup can be observed as
the application utilizes more processes. However, these numbers are not surprising when
considering the effects of Amdahl’s Law, which states that speedup of a task is limited by
the portion of the task that can not be parallelized, with each additional parallel process
providing less performance improvement than the addition of the previous. Amdahl’s Law
provides us with the following formula:

S =
1

(1− p) + p
n

where S is expected task speedup, p is the percentage of the task that can be parallelized, and
n is the number of parallel processes. Using a rough approximation of p ≈ 99.87 yields an
expected speedup of approximately 3.98 for 4 parallel processes and 192.3 for 256 processes,
which supports the results shown in Figure 27.

4.5.4 Monte Carlo

The testing of the Monte Carlo application focused on ensuring appropriate scalability. The
program that acted as the user executable was a simple Python dice roll program which
printed a random number between one and six. The blue line in the graph below shows the
results of 100 random dice rolls on 4, 8, 16, 32, and 64 CPUs. The orange line shows the
same test except with 1,000 random dice rolls. The variation using 4 CPUs for the two tests
is large with the 100 rolls running approximately 3.13 seconds, while the 1,000 rolls clocks
at 31.46 seconds. Both tests converge towards 64 CPUs, yet it is clear that the 1,000 runs

44

benefited more from additional CPUs than the 100 runs. This can be seen in the table below
where from 32 to 64 CPUs, the 100 runs only speeds up 8.3% compared to the previous
38.1% speedup from 16 to 32 CPUs. The total speedup from 4 to 64 CPUs for 100 runs is
82.2%. For the 1,000 runs, the speedup is consistently around 50% for all additional CPU
tests. The speedup is 93.2% from 4 to 64 CPUs for 1,000 runs.

100 Dice Rolls 1,000 Dice Rolls
Run Time Run Time

Nodes (seconds) % Speedup (seconds) % Speedup
1 11.7004 - 113.4626 -
4 3.1275 73.2702 31.4619 72.2712

8 2.1206 32.1947 14.8163 52.9072

16 0.9785 53.8559 7.76318 47.6037

32 0.6057 38.1015 4.1045 47.1290

64 0.5554 8.3066 2.1351 47.9801

1→ 64 - 95.2533 - 98.1182

Table 17: Test Results for Monte Carlo Application

20 21 22 23 24 25 26
0

20

40

60

80

100

120

Number of Nodes

T
im

e
(s
)

100 Dice Rolls
1000 Dice Rolls

Figure 28: Monte Carlo Scaling Results

This test data reflects other test results that have been shown on BOB. The communication
bottlenecks tend to mostly affect smaller programs (which most likely do not need to be
parallelized) and programs that utilize a large number of reads and writes. With this Monte

45

Carlo application, results are likely to vary depending on the user specified executable,
however, the results show improvement with the addition of CPUs for these test runs.

4.5.5 Numeric Integration

The Numeric Integration Application utilizing right Riemann sums demonstrated expected
results throughout testing. Similar to the results in Parallel Pi, there was a diminishing
return present in the Percent Error results, yet again due to Amdahl’s Law, and this is
shown in both Figure 29 and Figure 31. Even though the figure showing run time looks
appropriate to the expectations, there were frequently trials which took significantly longer
than expected. This may be due to any number of factors since testing was performed
using SLURM in order to specify the number of cores for a run. Though gathering data to
show timing results was important for testing, it is worth mentioning that run time for this
application should be approximated as results were inexact and, at times, inconclusive. Also,
please note that Figure 31 utilizes data from both the 10-sample runs and 100-sample runs
because it seeks to show the percent error for the total rectangles while not emphasizing the
number of cores used to obtain the results. This was done to demonstrate the effectiveness
of the Riemann sum calculation aspect of the application and not its parallelization.

22 23 24 25 26 27 28
0

2

4

6

8

Number of Cores

%
E
rr
or

10 Samples Per Core
100 Samples Per Core

Figure 29: Percent Error vs. Number of Cores

46

22 23 24 25 26 27 28
0

0.2

0.4

0.6

0.8

1

Number of Cores

T
im

e
(s
)

10 Samples Per Core
100 Samples Per Core

Figure 30: Run Time vs. Number of Cores

200 400 600 800 1,000 1,200 1,400 1,600
0

2

4

6

8

Number of Rectangles

%
E
rr
or

Figure 31: Percent Error vs. Number of Rectangles

47

Cores 10 Samples 10 Samples 100 Samples 100 Samples
% Error Run Time (s) % Error Run Time (s)

4 7.854 0.00058 0.785 0.03285

8 3.927 0.0416 0.393 0.1117

16 1.963 0.11552 0.196 0.15657

32 0.982 0.23274 0.098 0.31466

64 0.491 0.43496 0.049 0.43414

128 0.245 0.47786 0.025 0.52061

256 0.123 0.87908 0.012 0.73723

Table 18: Test Results for Numeric Integration Application
(Note: # samples are per core)

4.5.6 DANNA

To test the distributed DANNA Evolutionary Optimization performance, a pole balancing
neural network was generated with a known seed over varying node counts to demonstrate
the scaling of the cluster’s performance. The network must survive at least 5 minutes of pole
balancing on the fitness tests.

Please note that EO is not an ideal benchmark because of the random aspect of the network
generation. Each time metric listed is the average of 5 runs performed with different random
starting seed values.

Nodes Distribution Algorithm Time (s) Scaling Factor
1 None 5930 1.00

8 Master-Slave 2105.8 2.82

16 Master-Slave 1244.6 4.76

32 Master-Slave 911.8 6.50

64 Master-Slave 897.8 6.61

Table 19: DANNA EO Performance for Pole Balancing

48

0 10 20 30 40 50 60
0

1,000

2,000

3,000

4,000

5,000

6,000

Number of nodes (4 threads per node)

T
im

e
(s
)

Figure 32: DANNA EO Performance for Pole Balancing

4.5.7 Fire Dynamics Simulator Results

A simple FDS file which models a room with a fire and an HVAC system was used for
testing scalability across the cluster. The original file contains a single mesh encompassing
the entire room. The mesh properties were entered into the mesh_slicer.py program which
generates series of test files. The files generated include one mesh, two meshes, four meshes,
16 meshes, 32 meshes, 64 meshes, and 128 meshes. These numbers were chosen to make it
easier to evenly divide the original mesh while still providing adequate data points to test
performance scaling.

The following chart and table show the results of the tests that were run on the Raspberry Pi
cluster above. Although the increase in performance from one to four meshes is significant,
there is little advantage in running it on more cores on the cluster. In fact, shortly after
16 cores the networking overhead of the cluster overwhelms the performance gains of more
cores.

49

0 5 10 15 20 25 30 35
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

of Meshes

E
xe
cu
ti
on

T
im

e
(s
)

Figure 33: Graphical results of tests dividing a simple room into multiple meshes on the
Raspberry Pi cluster.

Total Elapsed
Number of Meshes Wall Clock Time (s)

1 13084.685
2 7807.769
4 5106.836
8 4522.845
16 4320.457
32 7464.152

Table 20: Tabular results of tests dividing a simple room into multiple meshes on a
Raspberry Pi cluster.

These results are not entirely unexpected, and in fact, they reflect the results that Salter
experienced in his research on distributed computing with FDS on cloud-based resources.
The advantage of a Raspberry Pi cluster is that it provides a large number of cores for a
relatively inexpensive price. The cores themselves are computationally weak compared to
traditional x86 cores. Each core adds a performance increase as well as an overhead cost, and
because the Raspberry Pi cluster is limited to a 48-port switch, there is an unclear bottleneck
past 48 Raspberry Pis. While the FDS overhead cost is virtually the same between x86 and
ARM cores, the performance per core is not. This explains why the Raspberry Pi cluster’s
scaling ability plateaus more quickly than a typical multicore x86 system.

50

4.5.8 TensorFlow

LeNet[11], a type of convolutional neural network (CNN) used to recognize handwritten digits
(0–9), was implemented on BOB. The dataset used for our tests is the MNIST handwritten
number dataset. For each of our tests, the parameters are stored on a node (parameter
server), and the heavy computation is assigned among worker nodes. Asynchronized param-
eter update was used here, i.e., the parameters are updated whenever a worker node finishes
its current training iteration.

Although deep learning (CNN) is famous for its outstanding representation power, its heavy
computation is notorious as well, which is mainly caused by the convolution operation and
large number of parameters in the model. In this case, with 1 ps (parameter nodes) and 3
worker (worker nodes), training one epoch takes 1 hour to finish. The testing result is shown
in Table 21. Note that only the training time for 1 epoch is listed.

ps nodes worker nodes training time

1 3 58′

1 7 1 : 51′

1 15 4 : 23′

Table 21: TensorFlow Performance

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

of Nodes

Tr
ai
ni
ng

T
im

e
(s
)

Figure 34: Graph of TensorFlow Performance

The result is controversial. It is expected with more nodes, the total time needed for training

51

should be reduced. However the testing result is opposite to our expectation. (Possible rea-
son: the overwhelming overhead, communication, because the workers have to transmit the
updates to the parameter server in order to update the parameters, and then the parameter
server has to transmit the parameters back to all the workers to train the next batch of
the dataset). More experiments will be conducted to examine the computation time and
communication between nodes in the cluster.

5 Challenges, Conclusions, and Future Considerations

Many of the complications encountered during the construction and testing of BOB were due
to inherent shortcomings of the Raspberry Pi itself. Inter-node communication was limited
by the Pi’s 100 Mb Ethernet as well as the reliance on a single connection between the two
network switches. Absence of support for a 64-bit operating system required us to rely on an
OS which utilizes a 32-bit ARMv7 kernel, meaning that we were unable to exploit many of
the performance improvements offered by ARMv8. A limit of 1 GB of on-board RAM also
contributed to a lack of single node performance and more reliance on the storage nodes,
increasing the strain on the storage nodes and the network as a whole. Storage speed was
also bottlenecked due to reliance on the Pi’s USB 2.0 ports. The ability to connect the
external hard disks via USB 3.0 or SATA would certainly provide a measurable increase in
storage speed. Were one of these options available, abandoning hard disk drives in favor of
solid-state drives would be ideal given a sufficient budget.

CPU throttling of the Pis was an issue throughout the project due to both inadequate power
supply as well as insufficient cooling methods. While throttling due to voltage sag was solved
by the replacement of the original power supplies and USB power cables, individual nodes
still sometimes experience thermal throttling while under heavy load due to BOB’s current
cooling configuration.

Security concerns came to light after networking issues were experienced late into the project.
Server logs showed several IP addresses originating in China had attempted an unsophisti-
cated brute-force SSH attack in an attempt to gain access to BOB. Although root access
via SSH was already disabled, Fail2Ban was implemented as an extra security measure,
blacklisting IP addresses after five successive failed login attempts. These security concerns,
along with the often unstable nature of BOB during the construction process, served as a
continuous reminder of the importance of the famous Git mantra: “Commit early, commit
often”.

Many potential improvements remain to be implemented as the first phase of BOB’s con-
struction comes to an end. More intensive application development is planned for the Fall
2016 semester, potentially focusing on the successful installation of Hadoop on OrangeFS via
OFS FUSE Client, the optimization of HPCG, as well as the development of new applications
in the areas of weather modeling and fluid dynamics. OrangeFS can be further developed by
investigating and manipulating the available user-defined configuration parameters and by
incorporating LDAP or key-based security in the initial build configuration of the portable
OrangeFS directory. Slurm accounting, used for collecting information about current and

52

previously executed Slurm jobs, remains to be configured. Improved cooling solutions may
also be explored due to aforementioned thermal throttling of some worker nodes when under
prolonged load. Finally, we are in possession of 32 Pine64+ single-board computers, which
boast Gigabit Ethernet and double the RAM of the Raspberry Pi 3. We have considered
adding these to the current system, as well as the possibility of “cloning” BOB and comparing
the performance of the two systems.

Overall, we consider the initial construction of the Big Orange Bramble to be a success. BOB
is a fully functional cluster with multiple working applications demonstrating its ability to
efficiently parallelize tasks. The cluster can be easily scaled as the addition of further worker
nodes is easily handled through the use of Ansible playbooks. BOB’s HPL results easily
outperform those of previous Raspberry Pi 2 clusters[13], and to our knowledge, this is the
first instance of OrangeFS being successfully implemented on any type Raspberry Pi clus-
ter[12]. While the Raspberry Pi’s low price makes it an appealing option for constructing a
budget computing cluster, building and testing of BOB has continually revealed fundamen-
tal limitations of the Pi which make it a less attractive choice for serious high performance
computing applications in comparison to other off-the-shelf options. In spite of these in-
herent shortcomings, however, BOB succeeds in acting as an effective learning environment
for students and faculty who wish to deploy, test, and evaluate distributed frameworks and
applications.

53

Figure 35: Success.

54

References
[1] Ansible is Simple IT Automation. Red Hat. url: https://www.ansible.com/ (visited

on 08/05/2016).

[2] ARM Options Using the GNU Compiler Collection. url: https://gcc.gnu.org/
onlinedocs/gcc/ARM-Options.html (visited on 06/16/2016).

[3] Donald Collins. Dividing and Conquering Meshes within the NIST Fire Dynamics Sim-
ulator (FDS) on Multicore Computing Systems. The University of Tennessee. url:
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=4916&context=
utk_gradthes (visited on 07/14/2016).

[4] Distributed TensorFlow. url: https://www.tensorflow.org/versions/r0.10/how_
tos/distributed/index.html.

[5] Fail2Ban. url: http://www.fail2ban.org/ (visited on 08/03/2016).

[6] Jason Floyd. FDS-SMV. NIST: National Institute for Standards and Technology. url:
https://github.com/firemodels/fds-smv (visited on 07/12/2016).

[7] Gluster Docs. url: http://gluster.readthedocs.io/en/latest/Developer-
guide/Developers-Index/ (visited on 08/05/2016).

[8] HPCG. url: http://www.hpcg-benchmark.org (visited on 08/02/2016).

[9] HPL A Portable Implementation of the High-Performance Linpack Benchmark for Dis-
tributed Memory Computers. url: http://www.netlib.org/benchmark/hpl (visited
on 06/14/2016).

[10] IOR. url: http://www.nersc.gov/users/computational-systems/cori/nersc-8-
procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ior/ (visited
on 08/05/2016).

[11] Yann Lecun et al. “Gradient-based learning applied to document recognition”. In: Pro-
ceedings of the IEEE. 1998, pp. 2278–2324.

[12] Walt Ligon. Re: Orange FS inquiry. Email. Message to Patricia Eckhart. June 13, 2016.

[13] V. M. Weaver M. F. Cloutier C. Paradis. “A Raspberry Pi Cluster Instrumented for
Fine-Grained Power Measurement. (in submission)”.

[14] Neuromorphic Computing at Tennessee Research Overview. url: http://neuromorphic.
eecs.utk.edu/pages/research-overview (visited on 07/27/2016).

[15] OpenLDAP Server. Ubuntu. url: https://help.ubuntu.com/lts/serverguide/
openldap-server.html (visited on 08/05/2016).

[16] OrangeFS Documentation. url: http://docs.orangefs.com/home/index.htm
(visited on 08/05/2016).

[17] OrangeFS Information. url: http : / / orangefs . com / information/ (visited on
08/05/2016).

[18] Raspberry Pi 3 now on sale at $35. url: https://www.raspberrypi.org/blog/
raspberry-pi-3-on-sale (visited on 06/02/2016).

55

https://www.ansible.com/
https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html
https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=4916&context=utk_gradthes
http://trace.tennessee.edu/cgi/viewcontent.cgi?article=4916&context=utk_gradthes
https://www.tensorflow.org/versions/r0.10/how_tos/distributed/index.html
https://www.tensorflow.org/versions/r0.10/how_tos/distributed/index.html
http://www.fail2ban.org/
https://github.com/firemodels/fds-smv
http://gluster.readthedocs.io/en/latest/Developer-guide/Developers-Index/
http://gluster.readthedocs.io/en/latest/Developer-guide/Developers-Index/
http://www.hpcg-benchmark.org
http://www.netlib.org/benchmark/hpl
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ior/
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ior/
http://neuromorphic.eecs.utk.edu/pages/research-overview
http://neuromorphic.eecs.utk.edu/pages/research-overview
https://help.ubuntu.com/lts/serverguide/openldap-server.html
https://help.ubuntu.com/lts/serverguide/openldap-server.html
http://docs.orangefs.com/home/index.htm
http://orangefs.com/information/
https://www.raspberrypi.org/blog/raspberry-pi-3-on-sale
https://www.raspberrypi.org/blog/raspberry-pi-3-on-sale

[19] C. Salter. “Fire Modelling Within Cloud Based Resources”. In: Fire Technology 51.3
(Oct. 2014), pp. 491–497. doi: 10.1007/s10694-014-0433-2. url: http://link.
springer.com/article/10.1007/s10694-014-0433-2.

[20] C. D. Schuman et al. “Parallel Evolutionary Optimization for Neuromorphic Network
Training”. In: Machine Learning in HPC Environments. Salt Lake City, Utah, 2016.

[21] Adam Simpson. Tiny Titan. Oak Ridge Leadership Computing Facility. url: www.
github.com/TinyTitan (visited on 07/02/2016).

[22] Slurm Commercial Support and Development. SchedMD. url: http://www.schedmd.
com/ (visited on 08/06/2016).

[23] Slurm Workload Manager. SchedMD. url: http://slurm.schedmd.com/ (visited on
08/05/2016).

[24] TensorFlow. url: https://github.com/samjabrahams/tensorflow-on-raspberry-
pi (visited on 08/05/2016).

[25] TensorFlow Example. url: https://github.com/tensorflow/tensorflow/blob/
master/tensorflow/models/image/mnist/convolutional.py (visited on 08/05/2016).

[26] Trinity Benchmarks. url: http://www.nersc.gov/users/computational-systems/
cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
(visited on 08/05/2016).

[27] Scott Williamson. subfact. url: https://github.com/scottjw/subfact_pi_ina219
(visited on 07/05/2016).

56

https://doi.org/10.1007/s10694-014-0433-2
http://link.springer.com/article/10.1007/s10694-014-0433-2
http://link.springer.com/article/10.1007/s10694-014-0433-2
www.github.com/TinyTitan
www.github.com/TinyTitan
http://www.schedmd.com/
http://www.schedmd.com/
http://slurm.schedmd.com/
https://github.com/samjabrahams/tensorflow-on-raspberry-pi
https://github.com/samjabrahams/tensorflow-on-raspberry-pi
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/models/image/mnist/convolutional.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/models/image/mnist/convolutional.py
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
https://github.com/scottjw/subfact_pi_ina219

Appendix A Hardware/Systems Build Guide

A.1 Hardware

A.1.1 USB Hub Modifications

The purchased IXCC 7-port USB 3.0 hub was originally designed for data transmission rather
than power distribution. In order to ensure that each hub would be capable of delivering
5 V and 10 A, some modifications were required. As described in Section 3.1.1, the trace
width required to carry the desired current would be 370 mils (1 mil = 0.001 in) whereas the
positive power bus trace was measured to be 100 mils on the board.1

To minimize the current traveling through the positive power bus, the trace was sliced
in the approximate midpoint using an Exacto-Knife (see Figure 36. By doing this, the
current would fan out such that the max current through a trace would be 2.5 A. A 16 AWG
stranded wire was used to connect the Power Supply to the two current fan-out points (See
Figure 37). No modifications were needed for the ground return path since all free space
on the board was a copper ground plane (GND polygon pour).

Figure 36: USB Hub: Sliced Power Bus

1Trace width was calculated using Advanced Circuit’s online trace calculator. Reference the URL: http:
//www.4pcb.com/trace-width-calculator.html

57

http://www.4pcb.com/trace-width-calculator.html
http://www.4pcb.com/trace-width-calculator.html

Figure 37: USB Hub: Power Rail Connections

Using diagonal pliers, the right angle header used as the USB input to the hub on the PCB
was removed. With the same Exacto-Knife that was used previously to slice the positive
power bus, the solder mask above the copper ground plane was scrapped in order to expose
the copper and a solder pad could then be created for the ground connection to the power
supply. Once both wires for power input to the hub were connected, the pairs were twisted
and electrical heat-shrink wrap was used to create a mechanical connection between the two
(see Figure 38).

Figure 38: USB Hub: Ground connection and Heat-shrink

Once these modifications were complete, the PCB was recovered with the original plastic
enclosure. The power input, twisted pair was then connected to the correct terminal on
the power supply. After these connections were made, the power supply and USB hub were
ready to be used (see Figure 39).

58

Figure 39: USB Hub: Complete with Power Supply

A.1.2 Daughter Card

To attach a daughter card to a node, first run the following to get I2C utilities:

$ sudo apt−get i n s t a l l i2c−t o o l s

Now enable the I2C interface on your Raspberry Pi by running this command:

$ sudo rasp i−c on f i g

Select Advanced Options, then select I2C, then select yes. Finish the raspi-config. Connect
the device to Pin 3 (SDA), Pin 4 (SCL), and Pin 6 (GND) at this point. It is also possible
to connect an external power supply to the Pi on Pin 1 (5V Power) and Pin 9 (GND). The
Raspberry Pi may require a restart before it will recognize that an I2C device is connected.

59

Figure 40: GPIO Diagram

Now check that the device is properly connected with these commands:

$ ls /dev/*i2c*
/dev/i2c-1

$ i2cdetect -y 1
0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: 40 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

The I2C bus should be /dev/i2c-1 and the device should be connected at 0x40.

If you don’t already have a git directory in your home folder, make one:

$ cd home
$ mkdir git

Now enter the git directory and clone the python library for the INA219 [27]:

$ cd git
$ git clone https://cwill133@bitbucket.org/bigorangebramble/

daughter-card.git

60

Install the following packages:

$ sudo apt-get install python-dev python-smbus python-cffi
$ sudo apt-get install python-cryptography python-paramiko

Now run the following installations separately:

$ sudo pip install cffi
$ sudo pip install cryptography

Now enter the daughter-card directory:

$ cd daughter-card

If you are on a node with an attached daughter card, test that you can take measurements
by running the measurement program:

$ python measure.py

If you are on the master node, run the wrapper.py program to query available nodes.

Note: When a new daughter card is added to a new node and after the node has run the
above configuration, the wrapper function will need to be updated with a handler for the IP
address of the new node.

A.2 Systems

A.2.1 Cluster Setup

1. Connect to the internet

2. sudo apt update

3. sudo apt upgrade

4. Create ssh key. ssk-keygen

5. Add your key to yourself.

6. Clone the ansible playbook.
git clone git@bitbucket.org:bigorangebramble/ansible_playbook.git

7. sudo apt install python-dev

8. sudo pip install markupsafe

9. sudo pip install ansible

10. Add 127.0.0.1 pih0 to hosts file.

11. Run playbook for the headnode.

12. Connect headnode to the rest of the nodes.

61

13. Setup the LDAP server. See A.2.2

14. Copy ssh key to other nodes in the cluster.

15. Copy pios0 key to pih0 for users pi and root.

16. Make sure all the nodes can be communicated with. ansible cluster -m ping

17. Run playbook for cluster

18. You will be asked for your system password twice when you download the build direc-
tories from the storage node.

Note: If the playbook fails when trying to mount the NFS server, log into the server node and
check the status of the nfs-kernal-server. You may have to reboot to load it into the kernel.
You may also have to restart rpcbind if portmapping is not up.

A.2.2 Security (LDAP)[15]

Setup the LDAP server on the head node.

1. sudo apt install slapd ldap-utils

(a) Set admin password when prompted

2. sudo dpkg-reconfigure slapd

(a) Omit OpenLDAP server configuration: no

(b) Set domain name when prompted

(c) Set the organization name when prompted

(d) Set admin password when prompted

(e) Set database type: MDB

(f) Remove on Purge: No

(g) Move old: Yes

(h) Allow LDAPv2: No

3. Setup server structure for scripts

(a) create add_content.ldif

dn: ou=Users,dc=example,dc=com
objectClass: organizationalUnit
ou: Users

dn: ou=Groups,dc=example,dc=com
objectClass: organizationalUnit
ou: Groups

62

(b) Add content sudo ldapadd -x -D cn=admin,dc=example,dc=com -W -f
add_content.ldif

(c) vim /etc/pam.d/common-session

i. add session required pam_mkhomedir.so to end.

Setup LDAP scripts to allow for easy creation of new users

1. sudo apt install ldapscripts

2. Edit /etc/ldapscripts/ldapscripts.conf

(a) SERVER="ldap://localhost"

(b) Set SUFFIX to domain name dc

(c) Uncomment GSUFFIX, USUFFIX, and MSUFFIX

(d) Set BINDDN to admin cn

(e) Set UTEMPLATE="/etc/ldapscripts/ldapadduser.template"

3. sudo cp /usr/share/doc/ldapscripts/examples/ldapadduser.template.sample
/etc/ldapscripts/ldapadduser.template

4. Edit /etc/ldapscripts/ldapadduser.template

(a) homeDirectory: /mnt/nfs/<user>

5. Add password to the script

(a) sudo sh -c "echo -n ’password’ >
/etc/ldapscripts/ldapscripts.passwd"

(b) sudo chmod 400 /etc/ldapscripts/ldapscripts.passwd

A.2.3 OrangeFS and MPICH2

1. Prepare system for OrangeFS Software Installation

(a) Install required packages on all nodes in cluster.

$ sudo apt-get install bison flex libfuse-dev libdb-dev
libssl-dev

(b) Download orangefs-2.9.5.tar.gz from www.orangefs.org to the designated build
node.
$ wget http://download.orangefs.org/current/source/orangefs-2.9.5.tar.gz

$ tar -xzf orangefs-2.9.5.tar.gz -C /dir
where dir= path to desired location to place OFS source directory

63

www.orangefs.org
http://download.orangefs.org/current/source/orangefs-2.9.5.tar.gz

(c) Create a directory on all the nodes in the cluster to mount OFS
$ sudo mkdir /mnt/orangefs

(d) Create a system configuration file on all the nodes that will contain the files system
information
$ sudo touch /etc/pvfs2tab

(e) Edit the pvfs2tab file to contain the location of the server’s OFS mount point

$ sudo echo "storage /mnt/orangefs pvfs2 defaults,noauto 0,0" >>
/etc/pvfs2tab

where storage=/dev/sda1 for server nodes or tcp://server1 :3334/orangefs for client nodes

2. Build and Configure Nodes

(a) Servers Nodes

i. Navigate to directory containing OrangeFS source files.

$ cd /dir /orangefs-2.9.5

ii. Configure the build node by running:

$ /dir /orangefs-2.9.5/configure --prefix=/opt/orangefs
--enable-fuse --enable-shared
where dir /orangefs-2.9.5= path to source files

$ sudo make
$ sudo make install

iii. Copy configured source files from build node to the node designated as the
client build node

$ sudo scp -r /dir /orangefs-2.9.5 node:/dir /
where dir = path to source files

(b) Client Nodes2

i. Configure the client build node by running:

$ /dir /orangefs-2.9.5/configure --prefix=/opt/orangefs
--disable-opt --disable-usrint --disable-server --enable-fuse
--enable-shared

where dir = path to copied OFS build from server

$ sudo make
$ sudo make install

2Rasbpian Jessie/linux kernel 4.4.11v7 cannot build the kernel module necessary to run the clients. The
clients must be reconfigured as FUSE clients from the original build node to bypass the linux kernel. This
requires the clients to be rebuilt from the original build node configuration.

64

ii. Copy the newly created executable software from the client build node to all
the client nodes in the cluster

$ sudo scp -r /opt/orangefs node:/opt/

3. Install and Configure MPICH2

(a) Download the MPICH 3.2 binary tar.gz file from MPICH
$ tar http://www.mpich.org/static/downloads/3.2/mpich-3.2.tar.gz -C /dir /

where dir = path to MPICH2 source files

(b) Avoid possible MPICH and PVFS compilation conflict by running:

$ sed -i s/ADIOI_PVFS2_IReadContig/NULL/ src/mpi/romio/adio/ad_pvfs2/ad_pvfs2.c
$ sed -i s/ADIOI_PVFS2_IWriteContig/NULL/ src/mpi/romio/adio/ad_pvfs2/ad_pvfs2.c

(c) Compile MPICH2 to run with OrangeFS support.

$ /dir/ configure --prefix=/opt/mpich2 --enable-romio
--enable-shared --with-pvfs2=/opt/orangefs
--with-file-system=pvfs2
$ sudo make all install

(d) Set library to path to point to MPICH libraries

$ export LD_LIBRARY_PATH=/opt/mpich-3.0.4/lib:$LD_LIBRARY_PATH

(e) Open /etc/profile.d/mpich.sh in a text editor and add
export LD_LIBRARY_PATH=/opt/mpich-3.0.4/lib:$LD_LIBRARY_PATH
to the file.

4. Initialize and run OrangeFS on the cluster

(a) Server

i. Navigate to the OrangeFS installation drive on the server node.

$ cd /opt/orangeFS

ii. Generate the configuration file specifying the file system parameters

$ sudo bin/pvfs2-genconfig /opt/orangefs/orangefs.conf

iii. Initialize the OrangeFS data and metadata storage locations

$ sudo sbin/pvfs2-server -f /opt/orangefs/orangefs.conf

-f creates the data and meta storage space
-r removes the data and meta storage space

iv. Start the OrangeFS server

$ sudo sbin/pvfs2-server /opt/orangefs/orangefs.conf

(b) Clients

65

i. On each client mount the OrangeFS file system

$ sudo /opt/orangefs/bin/pvfs2fuse /mnt/orangefs -o
fs_spec=tcp://server1:3334/orangefs

A.2.4 Monitor Service

1. Clone the node_monitor repository.

(a) git clone git@bitbucket.org:bigorangebramble/node_monitor.git

2. Run the included ansible playbook to install and start the service.

(a) ansible-playbook start_service.yml

A.2.5 Power on BOB

1. Turn on the two power strips.

2. Wait for the system to boot.

3. Check that the system is booted.

(a) Login as pi user.

(b) $ ansible cluster -m ping
If all of the nodes respond then your know that the system is booted.

4. Restart the services.

(a) Login as pi user.

(b) $ ansible-playbook ∼/git/ansible_playbook/restart_services.yml

A.2.6 Restart BOB

1. Run the restart script.

(a) Login as pi user.

(b) $ ansible-playbook ∼/git/ansible_playbook/reboot.yml

2. Wait for the system to reboot.

3. Check that the system is booted.

(a) Login as pi user.

(b) $ ansible cluster -m ping
If all of the nodes respond then your know that the system is booted.

4. Restart the services.

66

(a) Login as pi user.

(b) $ ansible-playbook ∼/git/ansible_playbook/restart_services.yml

A.2.7 Shutdown BOB

1. Run the shutdown script.

(a) Login as pi user.

(b) $ ansible-playbook ∼/git/ansible_playbook/shutdown.yml

2. Wait for the system to shutdown.

(a) System is shutdown once both lights on the Pi are solid for all of the Pis.

3. Turn off the two power strips.

A.2.8 LDAP Usage

To manage users and groups, use the LDAP Scripts. The available commands are:

• ldapadd

• ldapaddgroup

• ldapaddmachine

• ldapadduser

• ldapaddusertogroup

• ldapcompare

• ldapdelete

• ldapdeletegroup

• ldapdeletemachine

• ldapdeleteuser

• ldapdeleteuserfromgroup

• ldapexop

• ldapfinger

• ldapgid

• ldapid

• ldapinit

• ldapmodify

• ldapmodifygroup

• ldapmodifymachine

• ldapmodifyuser

• ldapmodrdn

• ldappasswd

• ldaprenamegroup

• ldaprenamemachine

• ldaprenameuser

• ldapsearch

• ldapsetpasswd

• ldapsetprimarygroup

• ldapurl

• ldapwhoami

• lsldap

67

Use the man pages to learn how to use the commands.

A.2.9 Start Monitor GUI

This guide goes over how to start the monitoring GUI on the monitoring node.

1. Open python2 IDE

(a) Click on applications.

(b) Go to programming.

(c) Click on python2 IDE.

2. Open the monitoring program.

(a) Click File → Open.

(b) Open the file ∼/git/Monitor_Gui/monitorgui.py

3. Run the program.

(a) click Run → Run Module

A.2.10 Monitor GUI via X11 forwarding

The monitor GUI can be run remotely using X11 forwarding. This usage guide goes over
how to launch the monitoring GUI. In order for this method to work you will need ssh and
an X11 server. Linux and OS X have both built in.

1. Connect to BOB with ssh compression and X11 forwarding.

(a) $ ssh -C -X <username>@bob.eecs.utk.edu

2. You will need to add your ssh key to pim. You only have to do this step once.

(a) $ ssh-keygen

(b) Use the default for all the options and keep pressing enter until the key is gener-
ated.

(c) $ ssh-copy-id pim

3. Run the monitor GUI.

(a) $ monitorgui
The program may take up to a minute to launch. It will run in the background
of the shell by default, so please be patient while it launches.

68

Appendix B Application Install and Usage Guide

B.1 Frameworks

B.1.1 TensorFlow

1. Installation of TensorFlow

(a) Install dependencies for TensorFlow.

For Python 2.7:
$ sudo apt-get install python-pip python-dev

For Python 3.3+:
$ sudo apt-get install python3-pip python3-dev

(b) Download wheel file from repository and install it.

For Python 2.7:
$ wget https://github.com/samjabrahams/tensorflow-on-raspberry-pi/

raw/master/bin/tensorflow-0.9.0-cp27-none-linux_armv7l.whl
$ sudo pip install tensorflow-0.9.0-cp27-none-linux_armv7l.whl

For Python 3.3+:
$ wget https://github.com/samjabrahams/tensorflow-on-raspberry-pi/

raw/master/bin/tensorflow-0.9.0-py3-none-any.whl
$ sudo pip install tensorflow-0.9.0-py3-none-any.whl

More information about installation of TensorFlow on the Raspberry Pi can be
found by visiting the GitHub repository URL provided in the references sec-
tion[24].

(c) Clone BOB TensorFlow application from BitBucket.

$ https://bitbucket.org/bigorangebramble/app-disttf.git

2. Distributed TensorFlow Execution
Begin the program by running the included sbatch script.

$ sbatch run_mnist_asyn.sh

By default the script uses 9 nodes, including 1 ps (parameter server) node and 8
worker nodes. The script can be edited to utilize more nodes for distributed purpose.
Currently, node assignment is hard-coded in the script as TensorFlow needs to specify
each node for the designated task. This script calls a Python program, mnist_asyn.py,
which is largely based on the example program found on Tensorflow’s repository[25].

69

B.2 Applications

B.2.1 HPL

1. Clone the latest OpenBLAS repository from Github.

$ git clone https://github.com/xianyi/OpenBLAS.git

2. Build OpenBLAS by navigating to its directory and running its included Makefile.
This makefile automatically recognizes the ARM processor and will build an optimized
ARMv7 binary with VFPv3-32 instructions.

$ cd OpenBLAS
$ make

3. Install the OpenBLAS library to your location of choice.

$ make install PREFIX=/home/user/OpenBLAS

4. Download the HPL source code from Netlib and extract it to a directory.

$ wget http://www.netlib.org/benchmark/hpl/hpl-2.2.tar.gz
$ tar xvf hpl-2.2.tar.gz

5. Prepare the HPL Makefile for the Raspberry Pi.

$ cd hpl-2.2
$ setup/make_generic
$ cp setup/Make.UNKNOWN Make.rpi

6. Modify the generic Makefile to match the appropriate paths and options for Raspbian
and OpenBLAS.

7. Make HPL

$ make arch=rpi

8. Configure the HPL parameters. Here are some guidelines:

(a) Matrix Size (N): N =
√
nodes× 105002

(b) Block Size (NB): 100

(c) Process Grid (P, Q): P × Q = nodes, typically best to be as close to square as
possible

(d) NBMIN, NDIV: 2 or 4

(e) Broadcast (BCAST): Blong (4), Helps compensate for the low bandwidth of the
100 Mbit Ethernet interconnect

(f) Swapping Threshold should match the block size.

70

9. To run HPL, ensure each node can access both HPL.dat and XHPL. Then, execute
XHPL through SLURM.

$ srun -N number_of_nodes ./xhpl

B.2.2 HPCG

• Download and extract the HPCG source.

$ wget http://www.hpcg-benchmark.org/downloads/hpcg-3.0.tar.gz
$ gunzip hpcg-3.0.tar.gz; tar -xvf hcpg-3.0.tar

• Create a Makefile for your architecture

$ cp setup/Make.MPI_GCC_OMP setup/Make.PI

• Edit the Makefile to have correct paths to MPI

• Create your build directory

$ cd hpcg-3.0
$ mkdir build
$ cd build
$../configure PI

• Compile HPCG

$ make

• Run HPCG with Quick Path flag

$ srun -N (nodes) ./xhpcg --rt=0

B.2.3 SPH

1. To begin, clone the SPH repository from Bitbucket.

$ git clone https://bitbucket.org/bigorangebramble/app-sph.git

2. The included makefile should work on any Raspberry Pi 3 cluster with the proper
dependencies installed. Using the make command, the executables sph.out and
slurm_target should be compiled into the app-sph/bin directory. The compilation
will likely take a few minutes to complete.

$ cd app-SPH
$ make
$ ls bin

3. (Optional) This application supports an Xbox 360 controller through the use of xboxdrv,
a driver available through apt-get

71

$ sudo apt-get install xboxdrv

Once installed, the Xbox controller needs to be configured using the provided config-
uration files. Using controller_1.cnf allows the user to control all parameters from
within the program without the ability to terminate it, ideal for a long running display.
controller_2.cnf functions identically to the first, with the exception that it can exit
the program through the select button.

In order to launch the driver run either of the following commands from the app-SPH
directory:

$ sudo xboxdrv -s -d -c controller_1.cnf &

or

$ sudo xboxdrv -s -d -c controller_1.cnf &

In the case of a successful launch, you should see a message similar to the following:

Your Xbox/Xbox360 controller should now be available as:
/dev/input/js0
/dev/input/event2

If your controller has been configured as a different event number (e.g. /dev/input/
event3 due to additional peripheral devices), you will need to modify the source code
in egl_utils.c on line 181 to match your event number.

In case of a failure in configuring the controller, follow the directions provided by the
driver to resolve your issue.

4. With the executables ready, the launch script SPH_Launch.sh can be run from the host
node, pih0 in our case.

$ sh SPH_Launch.sh

This will make the necessary salloc, squeue, and mpirun calls to launch the process.
This will begin the simulation, allowing the user to perturb the system as they see fit.
Various presets can be reached with the abxy buttons, the variables can be modified
directly with the D-pad, and the number of nodes is controlled with the left and right
bumper buttons.

B.2.4 PiBrot

1. To begin, clone the PiBrot repository from Bitbucket.

$ git clone https://bitbucket.org/bigorangebramble/app-PiBrot.git

2. The included makefile should work on any Raspberry Pi 3 cluster with the proper
dependencies installed. Using the make command, the executables pibrot and
slurm_target should be compiled into the app-PiBrot/bin directory. The compila-
tion will likely take a few minutes to complete.

72

$ cd app-PiBrot
$ make
$ ls bin

3. (Optional) This application supports an Xbox 360 controller through the use of xboxdrv,
a driver available through apt-get

$ sudo apt-get install xboxdrv

Once installed, the Xbox controller needs to be configured using the provided con-
figuration file. In order to launch the driver run the following command from the
app-PiBrot directory:

$ sudo xboxdrv -s -d -c controller.cnf &

In the case of a successful launch, you should see a message similar to the following:

Your Xbox/Xbox360 controller should now be available as:
/dev/input/js0
/dev/input/event2

If your controller has been configured as a different event number (e.g. /dev/input/
event3 due to additional peripheral devices), you will need to modify the source code
in egl_utils.c on line 174 to match your event number.

In case of a failure in configuring the controller, follow the directions provided by the
driver to resolve your issue.

4. With the executables ready, the launch script SPH_Launch.sh can be run from the host
node, pih0 in our case.

$ sh SPH_Launch.sh

This will make the necessary salloc, squeue, and mpirun calls to launch the process.
From within the application, navigate the cursor over the start button and press A to
launch the race.

B.2.5 Parallel Pi

Begin by cloning the Parallel Pi repository from Bitbucket.

$ git clone https://bitbucket.org/bigorangebramble/app-PiBrot.git

The repository contains two files: bbp.py, which is responsible for completing the actual
pi calculation, and slurm_pi.sh, a Slurm batch script which manages options such as the
number of worker nodes and the output file. The bbp.py script’s only dependency is the
mpi4py Python package. Therefore, the script can be run directly from the command line
using the mpirun command. However, it is strongly recommended that you utilize Slurm
and the included batch script, which is invoked from the command line using the sbatch
command.

73

$ sbatch slurm_pi.sh

The included batch script defaults to 8 nodes with 1 CPU per task, for a total of 32 parallel
tasks. The script can be edited directly to use a different number of nodes, or the default
node number can be overridden when calling sbatch using the -N flag. The default output file
is pi.txt, which can also be changed by editing the batch script or by using the -o flag when
calling sbatch from the command line. The output file will contain the calculated value of pi,
time elapsed during the calculation, the set precision of Python’s decimal module, and the
number processors utilized by the script. Within the actual bbp.py script, decimal precision
and the length of the finite series can both be modified if the user wishes to calculate a more
accurate approximation of pi. However, increasing decimal precision can quickly lead to an
exponentially greater runtime with minimal increase in the accuracy of the approximation.

B.2.6 Monte Carlo

Before running your program using the Monte Carlo application, please note that the current
version does not allow any command line arguments to your program. It also only supports
C/C++ or Python executables. The path to the output file from the Monte Carlo application
will be placed either in the same directory that you run the GUI from or, if you are using
command line, the directory where the batch file is submitted.

After logging into BOB, copy the Monte Carlo application to your own directory.

username@pih0:~ $ cp -R hduser/montecarlo mymontecarlo
username@pih0:~ $ cd mymontecarlo

For the GUI:
Run the GUI by entering python mc_gui.py, then input the executable path, maximum run
time, output filename, and number of CPUs requested. Once you submit your information,
you can check your job by exiting the GUI and typing squeue.

For command line:
The name of the python script to create and submit a batch file for the Monte Carlo appli-
cation is mc_batch.py. The options to run are the same as for the GUI, but they can be
specified as follows:

usage: python mc_batch.py [-h] [-i INPUTAPP] [-o OUTFILE] [-r NUMRUNS]
[-max [MAXRUNTIME]] [-dl [DEADLINE]] [-N [CPUS]]

Argument Descriptions:

-h, --help For Help
-i INPUTAPP REQUIRED: Path to executable
-o OUTFILE REQUIRED: Name of output file
-r NUMRUNS REQUIRED: Total number of runs
-max [MAXRUNTIME] OPTIONAL: maximum total run time
-dl [DEADLINE] OPTIONAL: deadline time
-N [CPUS] OPTIONAL: numbers of CPUs

74

B.2.7 Numeric Integration

1. After logging in, navigate to the numeric-integration folder. Open the
reimann-parallel.py program and type the function you want to integrate in the
func() subroutine.

#DEFINE YOUR FUNCTION HERE!
def func(x):

y = numpy.cos(x)
return y

2. In the main subroutine, set the beginning of the domain you want to integrate over in
the xStart variable. Then set the end of the domain you want to integrate over in the
xEnd variable.

#SET THE DOMAIN BEGINNING AND END
xStart = 0.0
xEnd = 1.0 * scipy.pi

3. (Optional) If you want to create a higher amount of accuracy (or create a more cal-
culation intensive program), you can change the number of rectangles per node in the
samplesPerRank variable. The default number of rectangles is 10. The error between
the Riemann Sums calculation and the actual integral calculation produced by the
scipy library will print at the end of the run.

#SET NUMBER OF SAMPLES (rectangles & accuracy)
samplesPerRank = 10

4. Save and quit the riemann-parallel.py file.

5. (Optional) Open the slurm_riemann.sh file and edit number of nodes to be used for
your calculation. Save this file.

#SBATCH -N 32

6. (Optional) You can also change the name of the output file produced by your program
run. Save and quit this file.

#SBATCH --output=out.txt

7. From command line, you can now run a batch job by typing sbatch slurm_riemann.sh.
When the job is finished, you can find your results in the specified output file.

B.2.8 DANNA

1. The DANNA simulator and evolutionary optimization systems are not currently open
source. Please contact the Neuromorphic Computing group at the University of Ten-
nessee, Knoxville to inquire about obtaining the system.

2. Create a folder to house the different repositories

75

~$ mkdir danna_repos

3. Clone the DANNA repository and the DANNA distributed EO repository into this
folder.

~$ cd danna_repos
~/danna_repos$ git clone (danna repo)
~/danna_repos$ git clone (danna eo repo)

4. Build the DANNA simulator, EO, and applications.

~/danna_repos$ cd danna
~/danna_repos/danna$ make sim
~/danna_repos/danna$ make eo
~/danna_repos/danna$ make apps

5. Build the distributed DANNA EO for the pole balancer application.

~/danna_repos/danna$ cd ../distributed_danna_eo
~/danna_repos/distributed_danna_eo$ make
~/danna_repos/distributed_danna_eo$ cd ../danna/Applications
~/danna_repos/danna/Applications$ cd danna-app-polebalancer
danna-app-polebalancer$ make bin/PBDEO

6. Run the distributed evolutionary optimization on the pole balancer app using SLURM
to launch the job. The distributed system can use several technique to farm out the
work. One of the following is recommended for BOB:

• Master-Slave (ms)

• Master-Master-Slave (mms)

$ srun -N (number of nodes) bin/PBDEO (seed) (ms or mms)

B.2.9 Fire Dynamics Simulator

1. Installing FDS Because there is currently no 64-bit operating system for the Rasp-
berry Pi, it is necessary to install the 32-bit version of FDS. The latest FDS version
supporting a 32-bit OS is 6.1.1. This guide assumes that mpich2 and slurm have both
been properly installed and configured for submitting parallel jobs to the cluster. See
other documentation on the Big Orange Bramble for details about how to do this.

First, install git if you haven’t already:

$ sudo apt-get install git

Create a git directory if you don’t have one:

76

$ cd ~
$ mkdir git

Clone the FDS-SMV repository maintained by NIST [6] into your git directory:

$ cd git
$ git clone https://github.com/firemodels/fds-smv.git

Now revert the repo back to its 6.1.1 state:

$ git reset --hard 898b35a

Navigate to the FDS_Compilation directory and list its contents. You should see the
mpi_gnu_linux directory. If so, run the make command to build the FDS binary with
the gnu compiler with mpich2 for 32-bit linux:

$ cd FDS_Compilation
$ make mpi_gnu_linux

After completion you should list the directory contents and see an fds_mpi_gnu_linux
binary. You can create an alias in your bashrc to run this binary when you type the
bash command:

$ fds test.fds

Otherwise you can just run the binary directly from the FDS_Compilation directory
or move it to another directory.

2. Testing the FDS Install

You can test the FDS install by running FDS on one of the examples provided in
the Verification directory in the FDS-SMV repository. For example, you can run the
water_ice_water.fds with this command from within the FDS_Compilation directory:

$./fds_mpi_gnu_linux ../Verification/water_ice_water.fds

This should run the water_ice_water FDS model with one mesh assigned to one
thread.

3. Running FDS With Slurm Slurm handles splitting the FDS meshes into processes
and threads for you. You can specify the number of cluster nodes to run the model on
with the -N option, or you can specify the number of threads with the -n option. You
specify which account the job will be assigned to with the -A option followed by your
username. For example, to run a model with four meshes assigned to four nodes use
the following command with an appropriate FDS file:

77

$ srun -A cwill133 -N 4 fds_mpi_gnu_linux sample_model_4_meshes.fds

This will dedicate one core from four separate nodes to each of the four meshes. Al-
ternatively you can run the model on a single node on each of the four cores:

$ srun -A cwill133 -n 4 fds_mpi_gnu_linux sample_model_4_meshes.fds

4. Notes: To fully utilize each core on each node, it is necessary to have node x core
count per node n̄umber of meshes. For example, to run on eight nodes with four cores
each, you must have thirty-two meshes. It is also important to note that you can run n
number of meshes on m number of threads so long as n ≥ m. In other words, you can
only run as many threads as there are meshes. It is possible to assign multiple meshes
to a single thread if the number of meshes exceeds the number of available cores.

78

Appendix C Daughter Card Schematic

Figure 41: The Daughter Card Schematic Diagram

79

Appendix D Daughter Card Bill of Materials

Figure 42: The Daughter Card Bill of Materials

80

	Introduction
	List of Parts and Materials
	Primary Parts List
	Optional Parts List

	Implementation
	Hardware Development
	Power Distribution Network
	Daughter Card
	Enclosure
	Monitor Node

	Operations & Systems Development
	Raspbian
	Slurm
	Ansible
	Security (LDAP)
	File System
	Network File System (NFS)
	OrangeFS (OFS)
	GlusterFS
	Implementing OrangeFS
	Implementation Challenges

	Networking
	Monitoring

	Standard Packages
	Frameworks and Tools Development
	Hadoop
	Hadoop on NFS
	Hadoop on OrangeFS

	TensorFlow

	Applications Development
	SPH
	PiBrot
	Parallel Pi
	Monte Carlo Simulations
	GNU Parallel
	Multiple Runs in Single Batch File

	Numeric Integration
	DANNA Evolutionary Optimization
	Fire Dynamics Simulator (FDS6 by NIST)
	HPL - High Performance Linpack
	HPCG - High Performance Conjugate Gradient

	Testing Results
	HPL Benchmark Results
	HPCG Benchmark Results
	File System Benchmark Results
	Networking Benchmark Results
	Applications and Frameworks Benchmark Results
	SPH
	PiBrot
	Parallel Pi
	Monte Carlo
	Numeric Integration
	DANNA
	Fire Dynamics Simulator Results
	TensorFlow

	Challenges, Conclusions, and Future Considerations
	References
	Appendices
	Appendix Hardware/Systems Build Guide
	Hardware
	USB Hub Modifications
	Daughter Card

	Systems
	Cluster Setup
	Security (LDAP)
	OrangeFS and MPICH2
	Monitor Service
	Power on BOB
	Restart BOB
	Shutdown BOB
	LDAP Usage
	Start Monitor GUI
	Monitor GUI via X11 forwarding

	Appendix Application Install and Usage Guide
	Frameworks
	TensorFlow

	Applications
	HPL
	HPCG
	SPH
	PiBrot
	Parallel Pi
	Monte Carlo
	Numeric Integration
	DANNA
	Fire Dynamics Simulator

	Appendix Daughter Card Schematic
	Appendix Daughter Card Bill of Materials

