
Applications for 68 Node Raspberry Pi 3
Education Cluster

Kelley A. Deuso, Gregory Simpson, Alok Hota, Mohammad Raji, Aaron
R.Young, J. Parker Mitchell, Jordan Sangid, and Mark Dean

The University of Tennessee, Knoxville TN 37996, USA
markdean@utk.edu

Abstract. In order to provide students access to a low-cost high perfor-
mance computing cluster, the Big Orange Bramble (BOB) project was
created. The project involved the design and implementation of a 68
node Raspberry Pi 3 cluster, for which Pi calculation, Monte Carlo sim-
ulation, fire dynamics simulation, and Spark applications were developed
and installed to demonstrate the educational advantages associated with
distributed and parallel computing education.

Keywords: cluster · HPC · ARM · education · Spark

1 Introduction

There is an increasing need for computational sciences education to include a
focus on distributed and parallel computing, particularly with the rise of cloud
computing and big data processing. For students, the prevailing limitations of
hands-on access to high performance computing clusters are their associated
cost, housing, and maintenance. In order to address this need, the Big Orange
Bramble (BOB) project was conceived to design a low-cost, easy-to-setup Be-
owulf cluster that students could develop, maintain, and utilize to further their
parallel computing education. The project involved the design and construction
of a cluster composed of 68 quad-core ARMv8 64-bit Raspberry Pi 3s. Aside
from building the cluster, the primary goals of the project were to establish the
operating environment, communication structure, application frameworks, appli-
cation development tools, and libraries to support a high performance cluster.
Additionally, open documentation was created to provide information to anyone
wishing to copy or expand upon BOB’s efforts. This paper seeks to expound the
development, analysis, and educational impact of the initial applications created
on BOB.

1.1 Hardware Overview

In order to understand the types of applications which could be developed, it is
important to note the major hardware components and their relevant limitations.

The cluster is composed of 68 Raspberry Pi 3 Model B computers whose main
attributes include a 1.2GHz 64-bit quad-core ARMv8 CPU, 1GB of LPDDR2
RAM, a microSDHC slot, and on board 10/100 Mbit/s Ethernet, 802.11n wire-
less, and Bluetooth 4.1 capabilities. The nodes are connected through two 48-port
gigabit switches with 96 Gbps switching capacity. However, the architecture of
the Raspberry Pis limits the networking throughput to 100 Mbps. There is a
single master node, two storage nodes, and a monitor node which is used in tan-
dem with a touchscreen display. The master node is also connected to a display
via HDMI in order to output any graphics and to allow for direct access to the
cluster. A daughter card was custom designed for the Raspberry Pis to monitor
supply voltage and current for each node, and this information is displayed on
the monitor node’s touchscreen display.

1.2 Systems Overview

All of the Raspberry Pis use Raspbian Jessie for their operating system, as
this was a customized Linux environment for the Pis. However, the Broadcom
BCM2837 SoC does not have support for a 64-bit kernel, so the Raspbian Jessie
kernel is 32-bit ARMv7. The limitations created by this are that the memory
utilization is lower than if a 64-bit kernel could be used, and the ISA and per-
formance improvements of ARMv8 are also not able to be taken advantage of.
For job scheduling and resource management, the open source Simple Linux Re-
source Management (SLURM) system has been implemented. For initial node
setup and deployment of configuration changes, Ansible is used. There are two
different file systems implemented on BOB: Network File System (NFS) and Or-
ange File System (OFS). NFS is the standard file system that is used alongside
Raspbian Jessie, and it is a purely distributed file system. OFS is an object-based
file system which divides data and distributes it to one or more servers. Users
can choose which file system they would like to use so that applications can be
catered to the preferred type. Lightweight Directory Access Protocol (LDAP)
has been implemented to create and maintain user accounts as well as control
and log access to the cluster.

2 Applications

Various applications were installed and developed for BOB. The intent was to
showcase a wide range of uses for BOB as well as to test the system components
and communication. The following sections discuss why a particular application
was chosen, how it was installed or developed, what the results of testing demon-
strated, and any future work or improvements for the application.

2.1 Parallel Pi

The degree to which the mathematical constant Pi can be accurately calculated
is often used to demonstrate the performance of modern computers. One of the
simplest methods of approximating the value of Pi is through the use of a conver-
gent series. This method is particularly applicable to the testing of BOB because
subsections of the chosen summation can be assigned to any number of available
worker nodes in parallel, as the resulting sum of each subsection is independent
of the others. Therefore, each worker node should be able to simply compute the
sum of their subsection and return the result to the master node, where all re-
sults are then summed for a final approximation of Pi. If the cluster is operating
as intended, a linear increase should be observed in runtime performance of the
approximation as the number of available worker nodes increases.

Initially, BOB’s Pi approximation application utilized the Leibniz formula
for calculating Pi:

π = 4

∞∑
i=0

(−1)i

2i+ 1

However, the formula converges extremely slowly, requiring the processing of
billions of terms to achieve a correct approximation of only 10–12 digits. Even-
tually, the Bailey-Borwein-Plouffe (BBP) formula, originally discovered by Si-
mon Plouffe, was chosen to replace the Leibniz formula due to its much faster
convergence rate.

π =

∞∑
i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)

The BBP formula, in combination with Python’s decimal module, which allows
users to specify floating-point precision, resulted in an approximation of Pi that
was accurate to thousands of decimal places in a fraction of the time required
for Leibniz. Performance results will be discussed in detail in the Testing and
Results section below.

Testing Results

Parallel Pi results were obtained from test runs using between 4 and 256 parallel
processes, with each test using twice the number of processes of the previous
test. As the division of the series into roughly equal subtasks is considered em-
barrassingly parallel, positive scaling results were anticipated. Test results are
presented in Figure 1. Please note that the scale of the x-axis is logarithmic.

10 20 30 40 50 60
0

100

200

300

400

Number of processes (4 per node)

T
im

e
(s

)

Fig. 1: Parallel Pi Scaling Results

As can be seen from the results above, a diminishing return in speedup can
be observed as the application utilizes more processes. However, these numbers
are not surprising when considering the effects of Amdahl’s Law, which states
that speedup of a task is limited by the portion of the task that can not be
parallelized, with each additional parallel process providing less performance
improvement than the addition of the previous. Amdahl’s Law provides us with
the following formula:

S =
1

(1 − p) + p
n

where S is expected task speedup, p is the percentage of the task that can be par-
allelized, and n is the number of parallel processes. Using a rough approximation
of p ≈ 99.87 yields an expected speedup of approximately 3.98 for 4 parallel pro-
cesses and 192.3 for 256 processes, which supports the results shown in Figure 1.

Educational Impact

While the Parallel Pi application is a fairly straightforward one, it demonstrates
the ease with which BOB can be used to customize, develop, test, and analyze

applications for BOB. The main goal of this application was to demonstrate
proof-of-concept and test basic Python programming and SLURM features. The
code for Parallel Pi is also available for any user who wishes to see a simple
example of Python and SLURM functionality for BOB. There are currently no
future plans for Parallel Pi. However, the successful results of this application led
to the idea of an automated script program to run multiple iterations of a single
program across the cluster, which has been called the Monte Carlo application
due to its original purpose of running Monte Carlo simulations.

2.2 Monte Carlo

A Monte Carlo simulation is a method of running a program with random val-
ues for variable(s) in order to create an overall model of the program’s output.
This type of simulation is useful for many applications, specifically for those
in physics and mathematics which involve probabilistic variables, such as the
Gillespie algorithm. The application can be run from either the command line
or a supporting GUI and allows the user to specify the input program file, total
number of runs, number of nodes to use, and maximum run time. The applica-
tion supports programs written in C/C++, Python, and Octave at this time.

GNU Parallel

Initially, GNU Parallel was installed in order to launch a single Monte Carlo job
which would run each iteration in parallel. GNU Parallel works with SLURM
to handle any interrupts during the runs, as well as appropriately assign jobs to
nodes. The idea was that one script could be created based on the user’s input
parameters, and using GNU Parallel, a single command could parallelize and
manage all iterations. Although this seemed to be a straightforward approach, it
failed to work properly during testing. For example, a batch script was created
invoking the parallel function from GNU Parallel, but after the script would
run once properly for a user, it would then not work again. In fact, all scripts
invoking GNU Parallel afterwards would no longer work for that user. An ex-
ample of this script is shown in Figure 2. It should also be noted that in the
testing of this method, errors occurred from the Perl code present in this script.
The Raspberry Pis were all using the Great Britain language packages which
were the default settings during setup. Therefore, the United States standard
unicode had to be updated across all nodes.

#!/bin/bash

#SBATCH -n 12

#SBATCH -o ot.txt

#SBATCH -t 12:00:00

srun="srun -n1 -N1 --exclusive"

parallel="parallel --delay 1 -j 30 --joblog test.log --resume"

$parallel "$srun ./a.out"

Fig. 2: An Example of a Batch File Using GNU Parallel

Multiple Runs in Single Batch File

Rewriting the Monte Carlo application to create multiple runs in a single batch
file is the current solution to the GNU Parallel issues. This implementation as-
signs a single simulation per core or node as specified by the user, and if the
desired number of runs is greater than 64, the total number of worker nodes, it
then divides up the total number of runs into chunks according to the number of
available cores, creates an srun call per chunk, and then submits the file as a job.
Each srun appends output to a single file utilized by all batches specified with
the --output flag. This is the same file that the user specifies either on the com-
mand line or in the GUI for output. The output file and the standard error file
will be stored in the same directory that the script is submitted. An example of
a batch file which runs 100 simulations on 8 CPUs is shown in Figure 3. While
this method seems more brute force than the GNU Parallel solution, SLURM
should still manage any interrupts. Slurm manages race conditions for the output
file and only appends output as each job completes. Because of this, it should be
noted that if a particular set of simulations prone to indefinite computation does
not have any time constraints enforced upon it, it is likely that output will not
be produced and the tasks will have to be killed manually. The maximum run
time parameter becomes important in this situation as well as when the cluster
is being shared with other users.

The testing of the Monte Carlo application focused on ensuring appropriate
scalability. The program that acted as the user executable was a simple Python
dice roll program which printed a random number between one and six. The blue
line in the Figure 4 shows the results of 100 random dice rolls on 4, 8, 16, 32,
and 64 CPUs. The orange line shows the same test except with 1,000 random
dice rolls. The variation using 4 CPUs for the two tests is large with the 100
rolls running approximately 3.13 seconds, while the 1,000 rolls clocks at 31.46
seconds. Both tests converge towards 64 CPUs, yet it is clear that the 1,000 runs
benefited more from additional CPUs than the 100 runs. This can be seen in
Table 1 where from 32 to 64 CPUs, the 100 runs only speeds up 8.3% compared
to the previous 38.1% speedup from 16 to 32 CPUs. The total speedup from 4 to

#!/bin/bash

#SBATCH -N 8

#SBATCH --job-name=montecarlo_dice_roll

#SBATCH --output=dice_output.txt

#SBATCH --open-mode=append

#SBATCH --cpus-per-task=1

#SBATCH -e montecarlo_dice_roll_err.txt

#SBATCH --time="00:00:30"

srun -n 4 python dice_roll.py

srun -n 32 python dice_roll.py

srun -n 32 python dice_roll.py

srun -n 32 python dice_roll.py

Fig. 3: An Example of Multiple Runs in Single Batch File

64 CPUs for 100 runs is 82.2%. For the 1,000 runs, the speedup is consistently
around 50% for all additional CPU tests. The speedup is 93.2% from 4 to 64
CPUs for 1,000 runs.

100 Dice Rolls 1,000 Dice Rolls
Run Time Run Time

Nodes (seconds) % Speedup (seconds) % Speedup

1 11.7004 - 113.4626 -
4 3.1275 73.2702 31.4619 72.2712
8 2.1206 32.1947 14.8163 52.9072
16 0.9785 53.8559 7.76318 47.6037
32 0.6057 38.1015 4.1045 47.1290
64 0.5554 8.3066 2.1351 47.9801

1→ 64 - 95.2533 - 98.1182

Table 1: Test Results for Monte Carlo Application

This test data reflects other test results that have been shown on BOB. The
communication bottlenecks tend to mostly affect smaller programs, which most
likely do not need to be parallelized, and programs that utilize a large number
of reads and writes. With this Monte Carlo application, results are likely to vary
depending on the user specified executable. However, the results show improve-
ment with the addition of CPUs for these test runs.

10 20 30 40 50 60
0

20

40

60

80

100

120

Number of Nodes

T
im

e
(s

)

100 Dice Rolls

1000 Dice Rolls

Fig. 4: Monte Carlo Scaling Results

Educational Impact

The creation of this application was targeted specifically to make initial use of
the cluster simple for any level of programmer. It eliminates the need to imme-
diately understand SLURM commands, but it displays the output script results
so that a user can ultimately see what it has created and learn these commands.
Initial exposure to parallel computing can be daunting, and trying to create
programs which run in distributed manner can be a challenging task for many.
This application allows most any C/C++, Python, or Octave program which
natively is not parallelized to produce many output results within the same real
timeframe. Users can take advantage of this application for simple testing of
self-contained programs, that is, those not requiring user input, or for running
their own stochastic simulations.

Additionally, the application is currently being used to develop an expansion
Monte Carlo application to implement the Gillespie algorithm. The Gillespie
algorithm is one broadly used in biology, chemistry, and even economics for
stochastic simulations. In the 1970s, Dan Gillespie and Joseph Doob created the
Gillespie algorithm to simulate chemical systems under the limited computa-
tional power of the time. The algorithm’s innovation lies within the discrete and
stochastic method of simulation utilizing few reactants without having to iter-

ate in real time due to its Monte Carlo steps. The Gillespie algorithm ultimately
creates an accurate model of a solution for the specified master equation set.
This expansion will allow users to create their own set of master equations to
test, tweak, and analyze on BOB.

2.3 Fire Dynamics Simulator

Fire modeling and fluid dynamics simulations are traditionally intensive com-
puting applications due to the large nature of both the physical structures, such
as whole houses or buildings, and the fluid dynamics calculations of fire flow.
Because of this, new computing methods and architectures are worth looking
into to determine whether the complexity can be lessened in order to reduce
run time, particularly in situations where time is a factor, like life-threatening
circumstances or lawsuits.

The National Institute of Standards and Technology (NIST) has developed
an open source fire simulation software fire dynamics simulator (FDS) which
aims to reduce computational and time complexities by using a technique which
divides sections of the computation into meshes. A mesh is a section within a
domain, e.g. a room or building, that is made up of rectilinear volumes. Then
each mesh is divided into cells, the number of which depends on the specified
resolution for the simulation. (FDS User Guide) Each mesh can then be assigned
to multiple processors in parallel, which can significantly reduce the execution
time necessary to create a complete model.

This portion of this project builds upon the work put forth by Donald Collins
in his master’s thesis for The University of Tennessee, Knoxville.[1] Collins’ re-
search focused on ways in which FDS modeling work could be efficiently and
quickly distributed across multiple processing cores. His work included a Python
script to evenly divide a single mesh into multiple meshes for insertion into an
FDS file. Fundamentally, his work allowed for one complex task to be subdivided
for execution in a parallel environment, ideal for an application on BOB.

Testing Results A simple FDS file which models a room with a fire and an
HVAC system was used for testing scalability across the cluster. The original
file contains a single mesh encompassing the entire room. The mesh properties
were entered into the mesh_slicer.py program which generates series of test
files. The files generated include one mesh, two meshes, four meshes, 16 meshes,
32 meshes, 64 meshes, and 128 meshes. These numbers were chosen to make
it easier to evenly divide the original mesh while still providing adequate data
points to test performance scaling.

Figure 5 and Table 2 show the results of the tests that were run on the
Raspberry Pi cluster above. Although the increase in performance from one to

four meshes is significant, there is little advantage in running it on more cores on
the cluster. In fact, shortly after 16 cores the networking overhead of the cluster
overwhelms the performance gains of more cores.

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
·104

of Meshes

E
x
ec

u
ti

o
n

T
im

e
(s

)

Fig. 5: Graphical results of tests dividing a simple room into multiple meshes on
the Raspberry Pi cluster.

These results are not entirely unexpected, and in fact, they reflect the re-
sults that Salter experienced in his research on distributed computing with FDS
on cloud-based resources. The advantage of a Raspberry Pi cluster is that it
provides a large number of cores for a relatively inexpensive price. The cores
themselves are computationally weak compared to traditional x86 cores. Each
core adds a performance increase as well as an overhead cost, and because the
Raspberry Pi cluster is limited to a 48-port switch, there is an unclear bottle-
neck past 48 Raspberry Pis. While the FDS overhead cost is virtually the same
between x86 and ARM cores, the performance per core is not. This explains why
the Raspberry Pi cluster’s scaling ability plateaus more quickly than a typical
multicore x86 system.

Total Elapsed

Number of Meshes Wall Clock Time (s)

1 13084.685

2 7807.769

4 5106.836

8 4522.845

16 4320.457

32 7464.152

Table 2: Tabular results of tests dividing a simple room into multiple meshes
on a Raspberry Pi cluster.

Educational Impact

Because fire and fluid dynamics simulations are complex and often can take weeks
to complete, students seeking to implement fire and fluid dynamics models have
severely limited access to clusters where they can run time intensive simulations.
BOB addresses this need as it is shown to handle large computations well, and
because BOB is a locally owned cluster, students have the access they would need
without time or monetary constraints. Unlike the Parallel Pi and Monte Carlo
applications, FDS is an open source package which was installed and tested on
BOB. This is crucial to the purpose and development of BOB in that students
are able to install and utilize existing software, such as Octave or Spark, that is
essential their distributed systems and parallel programming educations. Cur-
rently, FDS is limited to an older 32-bit version due to BOB’s operating system
constraints. However, potential hardware improvements on BOB may allow for
a 64-bit version to be installed and tested.

2.4 Spark

Apache Spark provides an abstracted interface to parallel programming, allowing
for applications to automatically scale across many nodes. Spark is commonly
installed on HPC systems around the world including premiere machines, such
as Titan at ORNL [5], Cori at NERSC [2], and Stampede at TACC [3]. Such
machines are characterized by having many cores and a large amount of memory
per compute node. However, this class of machine often has restricted access,
and utilization costs may be expensive to maintain.

Spark was simple to set up and launch on BOB. To keep logins uninterrupted,
the Spark environment was set up such that the first worker node acted as the
master. Any number of the remaining 63 nodes could act as Spark workers,

controlled by the master. For testing the system, two Spark applications from
other research projects were used. Though each node is much weaker in compute
power compared to, for example, Titan nodes, good strong scaling is achievable
with compute intensive tasks.

Spark Applications

Two in-house research projects were used for testing. Both projects perform
segmentation on data and do a large number of comparisons among the segments.
The two projects can be summarized as:

A. An image-space analysis tool that compares spatial data across time
B. An ensemble analysis tool that compares volumes across time and ensemble

runs

Though both projects perform comparisons, they have vastly different runtime
requirements. These requirements stem from the type of processing they do on
segments of the data and the method in which the result is output.

Project A performs comparisons of multivariate spatio-temporal data in im-
age space. The temporal space is represented as a stack of two-dimensional im-
ages. The master node performs a downsampling (unweighted averaging) on each
image based upon a user-configurable input parameter. Pixels in the downsam-
pled images represent an n×n region from the original image. The downsampled
images are sent to all workers. Each worker then performs a comparison between
one pixel in the downsampled image space against all other pixels, similar to
a Cartesian product. The comparison is based upon a user-defined comparison
function that quantifies a distance metric between partitions. The resultant value
from the comparison function for each pixel is stored in a new image.

Project B performs comparisons of three-dimensional univariate ensemble
data – multiple output sequences from a simulation – to remove duplicate re-
gions. Worker nodes load a single volume into memory at a time to be segmented
into equal-sized blocks. Blocks are hashed based on the values contained within
them, and hash values are compared. Matching blocks are removed in favor of
a single reference to the original block and receive a single block ID to identify
them. This process essentially performs deduplication on volumetric data. Each
worker produces a table mapping block IDs to data and a grid that defines a
blueprint for rebuilding a single volume. These are further reduced again to con-
solidate matching block IDs across volumes on the master.

Project A is a highly compute-intensive task. Since the images are downsam-
pled before being distributed, they remain manageble within the Raspberry Pi’s
limited memory. For example, with a partition size of 4×4 pixels, each image be-
ing distributed is 16 times smaller than the original. Additionally, the output for

each node is always an image of the same dimensions as the incoming downsam-
pled image. However, the comparison function can be arbitrarily complex, and
can operate over one or many time steps. Thus there is low overhead to distribut-
ing the image data to all workers and a high utilization of CPU cores per worker.

Project B on the other hand is much more limited by memory, as larger
volumes need to be loaded into memory for analysis. Each volume requires a
grid representation; for smaller block sizes, the grid is much denser and requires
much more memory. The output for each node also includes a hash table map-
ping hashed block IDs to block data. While the hashes themselves are small,
and the blocks are stored in a transformed state, the overhead from the data
structure and the grid representation may exceed the original data’s size if the
degree of deduplication is low.

Scalability

The compute intensive Project A fared much better, showing good strong scal-
ing. The image data was more manageable under limited memory conditions
and required a larger amount of processing per segment. Project B failed to run
on BOB due to its high memory requirements. This was somewhat expected as
Project B was designed to operate on terascale datasets with large volumes.

Figure 6 shows how Project A scales based on the number of nodes used.
Below 16 nodes took over two hours and did not complete within a reasonable
amount of time. The parameters used were 20 time steps with a 4 × 4 grid size
for downsampling.

There were several considerations made to run successfully with Spark within
the constraints of the Raspberry Pis. The first was Spark environment values.
The driver memory and executor memory values, for the master process and
worker processes, respectively, had to lowered to fit within the 1 GB memory
constraint. Both values were set to 512 MB. Note that for executor memory, this
is the maximum amount of memory to be used per process. There are four pro-
cesses per worker node utilizing the quad-core CPU, which would sum to 2 GB
maximum utilization. However, Spark attempts to keep memory under a certain
limit, called the safety fraction, based upon the requested maximum. Setting
values lower than 512 MB per process would result in low utilization per core
as the tasks become too small, while at 512 MB full utilization can be achieved
without incurring an out-of-memory crash.

Second, the number of partitions was increased for the submitted Spark job.
By default, Spark creates one partition per core in the set of worker nodes be-
ing used. In BOB’s case, with 63 worker nodes, this defaulted to 252 partitions.
However it is recommended to partition to two or three times the number of

16 24 32 40 48 56 63
0

1,000

2,000

3,000

4,000

5,000

6,000

Number of Spark Worker Nodes

E
x
ec

u
ti

o
n

T
im

e
(s

)

Fig. 6: Strong scaling curve for Project A running in Spark on BOB.

cores. This resulted in large tasks that did not fit in memory, so the number of
partitions was increased to eight times the number of cores. Note that this still
showcases strong scaling when changing the number of nodes. Though each core
is assigned eight tasks, the actual amount of work done per task changes because
the problem size remains static.

Lastly, all calls to collect() or toLocalIterator() were removed, both
of which perform a data collection operation. That is, data is transferred from
worker nodes to the master node’s memory. In either case, this requires a large
overhead that could not be afforded. Instead, the parallel file system was taken
advantage of and results from the workers nodes were saved in parallel. For
Project A, this mean saving images to disk in parallel. However Project B re-
quired that the results from worker nodes be reduced, which multiplied the size
of the working set.

Educational Impact

Apache Spark provides a highly abstracted interface for parallel programming.
It allows for code to be written in Python, Java, or Scala using a pipeline struc-
ture. Paralellization is automated across a user-defined number of nodes with

no need for the user to manage communications. This presents an opportunity
to educate students on parallel programming methods without involving any
boilerplate code or environmental setup. Additionally due to the lower sunken
cost of procuring a Raspberry Pi cluster, there is much wider access to high
performance parallel programming platforms.

3 Conclusion

Because of the success of BOB, an expansion cluster is underway which involves
combining BOB with 32 Pine64s and 12 Nvidia TX1 GPUs to create a truly
heterogeneous cluster. Furthermore, applications development is now targeted at
weather forecasting, facial recognition, and as previously mentioned, the Gille-
spie algorithm addition to the Monte Carlo application. BOB has also recently
been participating in the BOINC from the University of California, Berkeley,
which allows BOB to be used for scientific research when it is not being utilized.

BOB has demonstrated a variety of capabilities through these applications,
and it is with certainty that the build and setup of a BOB-like cluster is an edu-
cational task on its own. The total cost of equipment for this cluster is estimated
around $5,000, a significant cost reduction in comparison to proprietary servers
like the SuperMicro 3U, 12-node MicroCloud SuperServer, for which the chas-
sis alone costs the same as all the components for BOB combined [4]. A parts
list, all documentation, and links to BOB’s code repository can be found at
http://web.eecs.utk.edu/~markdean. The Big Orange Bramble project sets
a precedent for computer and information science students to have access to
local, distributed architecture. There is no longer a limitation of access to high
performance clusters in education, and the benefits of BOB are momentous for
modern day computing education.

References

1. Collins, Donald Charles. “Dividing and Conquering Meshes within the NIST Fire
Dynamics Simulator (FDS) on Multicore Computing Systems.” Thesis. The Uni-
versity of Tennessee, Knoxville, 2015. TRACE:Tennessee Research and Creative Ex-
change. Dec. 2015. Web. Dec. 2016.

2. “Cori.” National Energy Research Scientific Computing Center. 9 Nov. 2016. Web.
15 Dec. 2016.

3. “Stampede” Texas Advanced Computing Center. N.d. Web. 15 Dec. 2016.

4. “SuperMicro 3U 12 Nodes MicroCloud SuperServer - 5038ML-H12TRF.” Rack-
mountPro. N.p., n.d. Web. 14 Dec. 2016.

5. “Titan Cray XK7.” Oak Ridge National Laboratories. N.d. Web. 15 Dec. 2016.

http://web.eecs.utk.edu/~markdean

4 Acknowledgements

The authors would like to thank Caleb Williamson, Shawn Cox, Taher Naderi,
Patricia J. Eckhart, Liu Liu, Chengcheng Li, and Ellias Palcu for their research
and contributions to this project.

	Applications for 68 Node Raspberry Pi 3 Education Cluster

