
Big Orange Bramble+
BOB and ALICE

December 2, 2016

1 / 53

Overview

Hardware Overview
Software Stack Overview
Enclosure
Daughter Card
Monitor Node
Fan & Reset Controller
Pine64 Issues

Slurm
Accounting
Benchmarking
Facial Recognition
FDS
WRF
Gillespie Algorithm

2 / 53

Hardware Overview

Figure 1: Hardware Diagram

3 / 53

Software Stack Overview

Figure 2: Software Stack

4 / 53

Enclosure

Figure 3: Enclosure

• Rack Enclosure on Casters

• Pull out shelf for keyboard

• One rack shelf for 32
Pine64s

• 3 rack shelves for NVIDIA
TX1s

• 12 PWM controllable 12V
Fans

5 / 53

Daughter Card Review

• Needed a way to measure power input to nodes.
• Convert analog measurements to digital packets.
• Send information to a Monitor Node.

Figure 4: Current Sense Technique

6 / 53

Daughter Card Review

Figure 5: Daughter Card Schematic
7 / 53

Daughter Card Updates

• PI-2 port on Pine64 allows for compatibility with BOB DC
• BOB DC did not use pull-up or pull-down resistors on I2C

SCL or SDA lines. Simple mod.

Figure 6: Mounted DC Figure 7: Pull-up Resistors

8 / 53

Daughter Card Firmware

• Same Adafruit C++ library for the INA219 was used
• The Python library overlay for this Adafruit C++ library had

to be completely rewritten
– The original Python library was written by a hobbyist
– It took advantage of several assumptions, many of which

included that this library would only be used with a
Raspberry Pi 1 or 2

– The rewritten library should be more generic and allow for
any Pi-like board with some flavor of Linux to utilize its
functionality and is made available on our BitBucket account

• Monitor node continues to handle communication with all
daughter cards

9 / 53

Monitor Node Backend

• Separate Raspberry Pi with Touchscreen
• Python monitoring script runs as a service on each node
• Each node sends:

– CPU temperature
– CPU load
– CPU frequency
– SoC core voltage

• Nodes with daughter cards also send:
– Supply current
– Supply voltage

• Information is sent via UDP packets
• Information sent from nodes every 2 seconds

10 / 53

Monitor Node GUI

Figure 8: Main Monitor Page

11 / 53

Monitor Node GUI

Figure 9: Heat Map Page

12 / 53

Fan & Pine Reset Controller

• Arduino Mega 2560 can control fan

PWM duty cycle, from Daughter Card

feedback through Monitor Node.

• Additionally provides wiring to toggle

RST on Pine64s

Figure 10: Fans
Figure 11: Arduino Shield for
Controller

13 / 53

Fan & Pine Reset Controller

Figure 12: Controller

14 / 53

Pine64 Issues

• Issues with HDMI/DVI Display
• Reboot Issues
• Networking Issues
• Software Difficulties
• Cache Issues
• HPL Issues - Failed Residual Calculation

15 / 53

Slurm Job Pack Investigation

16 / 53

Slurm Job Pack Investigation

16 / 53

Slurm Job Pack Investigation

16 / 53

Slurm Job Pack Investigation

16 / 53

Slurm Job Pack Investigation

16 / 53

Slurm Job Pack Investigation

16 / 53

Slurm Job Pack Investigation

16 / 53

Slurm Job Pack Investigation

16 / 53

Slurm Job Pack Investigation

16 / 53

Slurm Job Pack Investigation

16 / 53

Slurm Job Pack Investigation

16 / 53

Slurm Job Pack Investigation

16 / 53

Slurm Job Pack Investigation

16 / 53

Slurm Job Pack Investigation

16 / 53

Slurm Job Pack Investigation

16 / 53

Accounting On Alice Investigation

• MySQL is used to store Slurm’s accounting information.
• MySQL apt package has missing dependencies and will not

install on the pine 64s.
• Apt has mysql-server-5.6 which can install.
• Learned how to configure Slurm for accounting and how to

setup the database for use with Slurm.
• Discovered that Slurm needs to be reconfigured to detect the

MySQL installation.
• Slurm can’t detect MySQL without MySQL-dev tools. Main

MySQL-dev has broken dependencies and 5.6 does not have
dev package.

17 / 53

HPL Algorithm

• Ax = b solved by LU Decomposition
• Matrix is of order N, divided into submatrices of order NB
• Process grid of P rows by Q columns

Figure 13: HPL Matrix

18 / 53

HPL - Pine64

20 40 60 80 100 120
0

1

2

3

4

5

Block Size (NB)

Pe
rf

or
m

an
ce

(G
FL

O
Ps

)

Revealed L2 cache is likely not functioning properly
19 / 53

HPL - Pine64

0 5 10 15 20 25 30
0

20

40

60

80

100

Number of nodes (4 threads per node)

Pe
rf

or
m

an
ce

(G
FL

O
P/

s)

Blue = Pine64, Red = BOB, Orange = TX1
20 / 53

HPL - nVidia TX1

0 2 4 6 8 10 12 14 16
0

50

100

150

Number of Nodes

Pe
rf

or
m

an
ce

(G
FL

O
Ps

)

Orange = TX1 CPU, Red = BOB
21 / 53

HPL - CUDA notes

• Two variations utilizing CUDA were found
• Github project from David Martin
• nVidia provided code for Intel & Fermi
• GPU offers only 16 GFLOPs theoretical for double precision
• Large overhead associated with both implementations due to

memory/data management
• Future goal: HPL for a zero-copy unified memory

architecture
• Future goal: Single precision CUDA-enabled HPL (∼500 SP

GFLOPs theoretical per GPU)

22 / 53

HPL - Performance Summary

• Pine64 demonstrated poor scaling due to block size and
networking
• Currently only getting 47 GFLOPs at 29% scaling efficiency

with 32 nodes
• nVidia TX1 demonstrated solid CPU performance
• Achieving 131 GFLOPs at 61% scaling efficiency with 12

nodes
• For reference, BOB achieved 148.8 GFLOPs at 37.7%

scaling efficiency with 64 nodes

23 / 53

HPCG

• High Performance Conjugate Gradient
• Complementary to HPL to evaluate performance
• Greater emphasis on memory access speed
• Intends to model more realistic workloads, not peak

performance
• Provides a “lower bound” to go with HPL’s “upper bound”

on performance
• Solves Ax = b with an sparse matrix conjugate gradient

method

24 / 53

HPCG - Pine64

0 5 10 15 20 25 30
0

1

2

3

Number of Nodes

Pe
rf

or
m

an
ce

(G
FL

O
Ps

)

Blue = Pine64, Red = BOB, Orange = TX1
25 / 53

HPCG - nVidia TX1

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

Number of Nodes

Pe
rf

or
m

an
ce

(G
FL

O
Ps

)

Red = BOB, Orange = TX1
26 / 53

HPCG - Performance Summary

• Pine64 yet again demonstrates poor scaling
• Achieved 807 MFLOPs at 41.5% scaling efficiency
• Actually a better showing than HPL - achieved 1.7% of HPL
• nVidia TX1 performs somewhat better than BOB - but less so

than in HPL
• Achieved 1.472 GFLOPs at 87.l5% scaling efficiency (1.1%

of HPL)
• For reference, BOB achieved 5.07949 GFLOPs at 94.5%

scaling efficiency (3.4% of HPL)

27 / 53

nVidia TX1 CUDA Notes

• Tegra X1 SoC offers very good performance for an
embedded system
• GPU is optimized for half-precision performance (1 TFLOP

theoretical)
• GPU is ill-suited for double precision tasks
• CUDA should utilize zero-copy memory because the SoC

shares its 4GB between the CPU and GPU already
• MPI should then be able to directly access the same memory

from the CPU and have good performance

28 / 53

Facial Recognition- Overview

• OpenCV
– Software package, initiated in 1999/2000
– Objective: real-time computer vision

• Process
– Detect faces in images.
– Detect faces with live video input.
– Machine learning and facial prediction.
– Parallelization.

29 / 53

Facial Recognition- Overview

c a s c a d e = ” c a s c a d e s / h a a r c a s c a d e s / h a a r c a s c a d e f r o n t a l f a c e d e f a u l t . xml ”
c = cv2 . C a s c a d e C l a s s i f i e r (c a s c a d e)

d e f open images (im) :
r i = cv2 . imread (im)
g i = cv2 . c v t C o l o r (r i , cv2 .COLOR BGR2GRAY)
r e t u r n g i

d e f d e t e c t f a c e s (im) :
g i = open images (im)
f l a g = cv2 . CASCADE SCALE IMAGE
f a c e s = c . d e t e c t M u l t i S c a l e (gi , s c a l e F a c t o r = 1 . 1 , minNeighbors =10 , minSize =(100 , 1 0 0) , f l a g s = f l a g)
p r i n t ”Number o f d e t e c t e d f a c e s : {0}”. f o r m a t (l e n (f a c e s))
r e t u r n show image (gi , f a c e s)

i f n a m e == ” m a i n ” :
images = [” image . j p g ”]
im = Pool (4) . map (d e t e c t f a c e s , images)

• Image processing internally parallelized with TBB library.
• I/O data parallelism with Pool().

30 / 53

Facial Prediction- Overview
• Process:

– Read in images. (Potentially on the order of hundreds)
– Resize each image consistently!!!

• Drawback: Undefined effect on initial image resolution.
• Solution: Minimalize resize factor.

– Separate into two numpy arrays:
• Samples: Image vectors.
• Labels: Assign label to each image vector for classification.

– Train algorithm(s) on image datasets.
– Predict on face using trained data.

• Implemented Algorithms
– Classification/Supervised learning:

• KNN
• Random Forest
• Ada Boost
• SVM
• Normal Bayes

31 / 53

Facial Prediction- Results
• Approach

0 , E l l i a s , 39 , 40 , 41 , 45 , 46 , 47 , 126 , 127
1 , Greg , 80 , 81 , 82 , 83
2 , Aaron , 84 , 85 , 87 , 88 , 89 , 90 , 91 , 92
3 , Jo rdan , 93 , 94 , 95 , 96 , 97 , 98
4 , Caleb , 99 , 100 , 101 , 102 , 103 , 104
5 , Dean , 105 , 107 , 108 , 111
6 , Pa rke r , 112 , 113 , 118 , 119
7 , Ke l l ey , 120 , 121 , 122 , 123 , 124 , 125

– Image file with image ranges corresponding to each label.

• Results
– Dependent on camera.
– Dependent on training data.
– Successfully predicts on high-resolution images.
– Struggles with low-resolution images.

• Onto parallelization!!!!!
32 / 53

Facial Prediction- Parallelization

• Approaches
– Point-to-point communication

• Master process responsible for distributing jobs.
• Interconnect between nodes too slow.
• Overhead from constant communication.

– Dynamic process management
• Each process gets copy of data.
• Upon job completion, worker broadcasts to surrounding

nodes.
• Suffers from slow interconnect speeds.

– Collective communication
• Slices data into even junks.
• Scatters among workers.
• Worker performs processing on individual chunk.
• Master process gathers all processed images.

33 / 53

Facial Prediction- Collective Comm.

i f n a m e == ” m a i n ” :
comm = MPI .COMM WORLD
s i z e = comm . G e t s i z e ()
r ank = comm . G e t r a n k ()
sample s = []
l a b e l s = []
f l = []
s = []
l = []

i f r ank == 0 :
d a t a = g lob (” P i c s /∗ . j p g ”)
s l i c e s = [[] f o r i i n r a n g e (s i z e)]
f o r i , s l i c e i n enumera t e (d a t a) :

s l i c e s [i % s i z e] . append (s l i c e)
e l s e :

d a t a = None
s l i c e s = None

sd = comm . s c a t t e r (s l i c e s , r o o t =0)

f l = Pool (4) . map (d e t e c t f a c e s , sd)

l a b e l s , s ample s = b r e a k l i s t s (f l)

s d a t a = comm . g a t h e r (l i s t (s amples) , r o o t =0)
l d a t a = comm . g a t h e r (l i s t (l a b e l s) , r o o t =0)

k i l l p r o c e s s (r ank)

34 / 53

Facial Prediction- BOB Results

0 10 20 30 40 50 60
0

20

40

60

80

100

120

Number of Nodes

E
xe

cu
tio

n
Ti

m
e

(s
ec

)
128 Images
256 Images
320 Images

35 / 53

Facial Prediction- ALICE Results

0 5 10 15 20 25 30
0

50

100

150

Number of Nodes

E
xe

cu
tio

n
Ti

m
e

(s
ec

)
128 Images
256 Images
320 Images
384 Images
448 Images

36 / 53

BOB vs ALICE- 128 Images

1 2 3 4 8 12 16 20 24 28 32
0

10

20

30

40

50

60

Number of Nodes

E
xe

cu
tio

n
Ti

m
e

(s
ec

)
BOB

ALICE

37 / 53

BOB vs ALICE- 256 Images

1 2 3 4 8 12 16 20 24 28 32
0

20

40

60

80

100

120

Number of Nodes

E
xe

cu
tio

n
Ti

m
e

(s
ec

)
BOB

ALICE

38 / 53

BOB vs ALICE- 320 Images

1 2 3 4 8 12 16 20 24 28 32
0

20

40

60

80

100

120

140

Number of Nodes

E
xe

cu
tio

n
Ti

m
e

(s
ec

)
BOB

ALICE

39 / 53

Facial Prediction- Conclusions

• BOB
– Speedup across 64 nodes:

• 128 images: 11.5x
• 256 images: 12x
• 320 images: 11.2x

• ALICE
– Speedup across 32 nodes:

• 128 images: 5.4x
• 256 images: 6.7x
• 320 images: 7x
• 384 images: 6.8x
• 448 images: 7.3x

40 / 53

FDS - Overview

• Fire Dynamic Simulator is a large-eddy simulation (LES)
code for low-speed flows, with an emphasis on smoke and
heat transport from fires.
• Takes advantage of parallel processing by dividing models up

into a series of meshes
• Each mesh interacts only with the meshes immediately

spatially adjacent to it, monitoring things like air flow and
heat transfer
• It is best if one mesh is assigned to one processor, although it

is possible to assign multiple meshes to a processor

41 / 53

FDS - Scaling Results

Figure 14: FDS results on BOB

42 / 53

FDS - Scaling Results

Figure 15: FDS results on ALICE

43 / 53

WRF - Overview

• Atmospheric modeling system for weather prediction
• National Center for Atmospheric Research, the National

Oceanic and Atmospheric Administration, Air Force Weather
Agency, and many more
• Domain is divided into grid, grid cells updated concurrently

by each worker node
• Primary challenges:

– compiling WRF and dependencies on BOB
– Network bottleneck when utilizing large number of worker

nodes
• Test case - Hurricane Katrina

44 / 53

WRF - Scaling Results

10 20 30 40 50 60
0

200

400

600

800

of Nodes (4 Processes Per Node)

E
xe

cu
tio

n
Ti

m
e

(s
)

45 / 53

Gillespie Algorithm

• Broadly used in chemistry, biology, and economics for
stochastic simulations
• Utilizes master equations and associated rates to create a

time-based model of reactions in a system
• Implemented with 2 Monte Carlo steps, thus is an expansion

of the previous Monte Carlo application on BOB
• Single simulation designated to single core

– No division of computation or parallelism
– Limited to 64 computations at any given time on BOB

• Simulations can run indefinitely

46 / 53

Gillespie Algorithm - Steps

1. Initialization: concentration of each species and rates of
reaction equations

2. Propensities: calculate the likeliness of each reaction to occur
– A propensity is calculated by µi = Cs ∗ ri for each reactant

species (on left side of the arrow)
– If the sum of propensities ever reaches 0, no more reactions

can occur in the system

3. Monte Carlo - Time: time step is chosen using ∆t = µtotal ln k
where k ∈ (0, 1) and µtotal is the sum of the propensities

4. Monte Carlo - Reaction: a reaction is chosen randomly,
weighted by propensities

5. Update: concentrations are updated based on which reaction
is chosen in previous step

47 / 53

Gillespie Example 1

• Species

E S ES P
10 11 12 5

• Equations

E+S→ ES 0.4
ES→ E+S 0.35
ES→ E+P 0.25

• Initial Propensities

E+S→ ES (10 ∗ 0.4) + (11 ∗ 0.4) = 8.4
ES→ E+S 12 ∗ 0.35 = 4.2
ES→ E+P 12 ∗ 0.25 = 3

48 / 53

Gillespie Example 1 Results

0 200 400 600 800 1,000 1,200
0

10

20

30

Time (ms)

C
on

ce
nt

ra
tio

n
E
S

ES
P

49 / 53

Gillespie Example 2 Results

0 500 1,000 1,500
0

10

20

30

Time (ms)

C
on

ce
nt

ra
tio

n
E
S

ES
P

50 / 53

Gillespie Example 3

• Species

A B C
10 0 0

• Equations

A→ B 0.33
B→ C 0.33
C→ A 0.34

• Initial Propensities
A→ B 10 ∗ 0.33 = 3.3
B→ C 0 ∗ 0.33 = 0
C→ A 0 ∗ 0.34 = 0

51 / 53

Gillespie Example 3 Results

0 20 40 60 80 100 120 140
0

2

4

6

8

10

Time (ms)

C
on

ce
nt

ra
tio

n
A
B
C

52 / 53

Big Orange Bramble+
BOB and ALICE

December 2, 2016

53 / 53

	Hardware Overview
	Software Stack Overview
	Enclosure
	Daughter Card
	Monitor Node
	Fan & Reset Controller
	Pine64 Issues
	Slurm
	Accounting
	Benchmarking
	Facial Recognition
	FDS
	WRF
	Gillespie Algorithm

