Big Orange Bramble+
BOB and ALICE

High

Performance
Computing

December 2, 2016

1/53

Overview

Hardware Overview Slurm

Software Stack Overview Accounting
Enclosure Benchmarking
Daughter Card Facial Recognition
Monitor Node FDS

Fan & Reset Controller WRF

Pine64 Issues Gillespie Algorithm

2/53

Hardware Overview

—TT—
L1 1

pine-w0 | pine-w8 |pine-w16 |pine-w2A nvidia-w0
pine-wl pine-w9 pine-w17, pine-w25| nvidia-w1
pine-w7 pine-w15 pine-w23 pine-w31 nvidia-w10
nvidia-w1l
| Gigabit Switch
Alice
Monitor Node

Internet

Figure 1: Hardware Diagram

3/53

Software Stack Overview

GNU)

- MPICH2 OpenMPI Cuda

File
System

- Po— —

Figure 2: Software Stack

4/53

Enclosure

e Rack Enclosure on Casters

Pull out shelf for keyboard

One rack shelf for 32
Pine64s

3 rack shelves for NVIDIA
TXl1s

12 PWM controllable 12V
Figure 3: Enclosure Fans

5/53

Daughter Card Review

® Needed a way to measure power input to nodes.
® Convert analog measurements to digital packets.
® Send information to a Monitor Node.

VsuppLy R2

loap

Figure 4: Current Sense Technique

6/53

Daughter Card Review

g..”—gg_.

Figure 5: Daughter Card Schematic

7153

Daughter Card Updates

® PI-2 port on Pine64 allows for compatibility with BOB DC

e BOB DC did not use pull-up or pull-down resistors on 12C
SCL or SDA lines. Simple mod.

Figure 6: Mounted DC Figure 7: Pull-up Resistors

8/53

Daughter Card Firmware

e Same Adafruit C++ library for the INA219 was used

® The Python library overlay for this Adafruit C++ library had
to be completely rewritten

— The original Python library was written by a hobbyist

— It took advantage of several assumptions, many of which
included that this library would only be used with a
Raspberry Pi 1 or 2

— The rewritten library should be more generic and allow for
any Pi-like board with some flavor of Linux to utilize its
functionality and is made available on our BitBucket account

® Monitor node continues to handle communication with all
daughter cards

9/53

Monitor Node Backend

Separate Raspberry Pi with Touchscreen
Python monitoring script runs as a service on each node

Each node sends:

— CPU temperature
— CPU load

— CPU frequency
— SoC core voltage

Nodes with daughter cards also send:
— Supply current
— Supply voltage

Information is sent via UDP packets

Information sent from nodes every 2 seconds

10/53

Monitor Node GUI

monitorgui.py

Node Selection Menu ‘ pine-w0 - ‘ ‘ Go to Map ‘ ‘ QuIT
Date & Time CPU Temperature CPU Load CPU Core Voltage
| FriDec 2 02:56:23 | 260 ¢ | 010 | 104 Volts \
ARM Frequency Supply Current Supply Voltage Shunt Voltage
|0.48 MHz H 234 mAmps H 4.992 Volts H 2.340 mVolts \
| Max CPU Temperature ~ | @ Node ‘ Min CPU Temperature « ‘ @ Node
[47.0 C | pinew17 | 260 C | pine-wo \
| Max Core Voltage - | @ Node ‘ Min Core Voltage - ‘ @ Node
| 1.3875 Volts H pim2 H 1.04 Volts H pine-w31 \
| Max ARM Frequency ~ | @ Node ‘ Min ARM Frequency = ‘ @ Node
| 1150.002 MHz | pim2 | 0.48 MHz | pinew31 \

Figure 8: Main Monitor Page

11/53

Monitor Node GUI

monitorgui.py

- pine-w8

pine-wl
pine-w2
pine-w3
pine-w4
pine-w5
pine-w6

pine-w7

pine-w9
pine-w10
pine-wll
pine-wl2
pine-wl3
pine-wl4

pine-wl5

pine-wl6 pine-w24

| CPU Load - \

pine-wl7 pine-w25 1.8
pine-wl8 pine-w26 1.3
pine-wl9 pine-w27 0.9 3.1

Z
2

pine-w20 pine-w28 rel

pine-w21 re2

pine-w22

Map Shows : | CPU Load
\ Thu Dec 1 21:57:1 | QuIT

pine-w23

Figure 9: Heat Map Page

12/53

Fan & Pine Reset Controller

® Arduino Mega 2560 can control fan
PWM duty cycle, from Daughter Card
feedback through Monitor Node.

® Additionally provides wiring to toggle
RST on Pine64s

Figure 10: Fans

ppooot
pppooQ

Figure 11: Arduino Shield for
Controller

13/53

Fan & Pine Reset Controller

Figure 12: Controller

14/53

Pine64 Issues

Issues with HDMI/DVI Display

Reboot Issues

Networking Issues

Software Difficulties

Cache Issues

HPL Issues - Failed Residual Calculation

15/53

Slurm Job Pack Investigation

Job Packs sound great
Released in 16.5

16/53

Slurm Job Pack Investigation

Job Packs sound great
Released in 16.5

i

16/53

Slurm Job Pack Investigation

Job Packs sound great
Released in 16.5

i

Post to Slurm
Mailing list

16/53

Slurm Job Pack Investigation

JOU I'dCKS S0OUlld glcdl

Released in 16.5

i

Post to Slurm
Mailing list

Job packs should be
released in 17.02

16/53

Slurm Job Pack Investigation

Y

Post to Slurm
Mailing list

Job packs should be
released in 17.02

i

16/53

Slurm Job Pack Investigation

Job packs should be
released in 17.02

i

Y

Post to Slurm

Mailing list

Git repository has a
job packs branch

16/53

Slurm Job Pack Investigation

Y

Post to Slurm

Mailing list

Job packs should be
released in 17.02

Git repository has a
job packs branch

l

i

16/53

Slurm Job Pack Investigation

Job packs should be
released in 17.02

Git repository has a
job packs branch

i

Try different
versions of MPI

16/53

Slurm Job Pack Investigation

Job packs should be Git repository has a
released in 17.02 job packs branch

i

Try different
versions of MPI

16/53

Slurm Job Pack Investigation

-

Try different
versions of MPI

16/53

Slurm Job Pack Investigation

Try different
versions of MPI

16/53

Slurm Job Pack Investigation

Try different
versions of MPI

Try new
OpenMPI

16/53

Slurm Job Pack Investigation

Try different
versions of MPI

Try new
OpenMPI

16/53

Slurm Job Pack Investigation

Try new
OpenMPI

= =

16/53

Slurm Job Pack Investigation

Job Packs sound
Released in 16.5

t

Post to Slurm
Mailing list
Job packs should be

released in 17.02 |

=

Git repository has a
job packs branch

“Try different
versions of MPI

16/53

Accounting On Alice Investigation

® MySQL is used to store Slurm’s accounting information.

® MySQL apt package has missing dependencies and will not
install on the pine 64s.

® Apt has mysql-server-5.6 which can install.

® [earned how to configure Slurm for accounting and how to
setup the database for use with Slurm.

® Discovered that Slurm needs to be reconfigured to detect the
MySQL installation.

® Slurm can’t detect MySQL without MySQL-dev tools. Main
MySQL-dev has broken dependencies and 5.6 does not have
dev package.

17/53

HPL Algorithm

® Ax = b solved by LU Decomposition
o Matrix is of order N, divided into submatrices of order NB

® Process grid of P rows by Q columns

Figure 13: HPL Matrix

18/53

HPL - Pine64

Performance (GFLOPs)

() | | | | | |
20 40 60 80 100 120

Block Size (NB)

Revealed L2 cache is likely not functioning properly
19/53

HPL - Pine64

100 I

Performance (GFLOP/s)

0 5 10 15 20 25 30
Number of nodes (4 threads per node)

Blue = Pine64, Red = BOB, Orange = TX1

20/53

Performance (GFLOPs)

150

100

N
(=)

HPL - nVidia TX1

| |
0O 2 4 6 8 10 12 14 16
Number of Nodes

Orange = TX1 CPU, Red = BOB

21/53

HPL - CUDA notes

Two variations utilizing CUDA were found

Github project from David Martin

nVidia provided code for Intel & Fermi

GPU offers only 16 GFLOPs theoretical for double precision

Large overhead associated with both implementations due to
memory/data management

Future goal: HPL for a zero-copy unified memory
architecture

Future goal: Single precision CUDA-enabled HPL (~500 SP
GFLOPs theoretical per GPU)

22/53

HPL - Performance Summary

Pine64 demonstrated poor scaling due to block size and
networking

Currently only getting 47 GFLOPs at 29% scaling efficiency
with 32 nodes

nVidia TX1 demonstrated solid CPU performance

Achieving 131 GFLOPs at 61% scaling efficiency with 12
nodes

For reference, BOB achieved 148.8 GFLOPs at 37.7%
scaling efficiency with 64 nodes

23/53

HPCG

High Performance Conjugate Gradient
Complementary to HPL to evaluate performance
Greater emphasis on memory access speed

Intends to model more realistic workloads, not peak
performance

Provides a “lower bound” to go with HPL’s “upper bound”
on performance

Solves Ax = b with an sparse matrix conjugate gradient
method

24/53

HPCQG - Pine64

Performance (GFLOPs)

0 5 10 15 20 25 30
Number of Nodes

Blue = Pine64, Red = BOB, Orange = TX1

25/53

Performance (GFLOPs)

HPCG - nVidia TX1

1.5

—_—
T

=
9]
T

| |
0 2 4 o6 8 10 12 14 16

0 | | | |

Number of Nodes
Red = BOB, Orange = TX1

26/53

HPCG - Performance Summary

Pine64 yet again demonstrates poor scaling
Achieved 807 MFLOPs at 41.5% scaling efficiency
Actually a better showing than HPL - achieved 1.7% of HPL

nVidia TX1 performs somewhat better than BOB - but less so
than in HPL

Achieved 1.472 GFLOPs at 87.15% scaling efficiency (1.1%
of HPL)

For reference, BOB achieved 5.07949 GFLOPs at 94.5%
scaling efficiency (3.4% of HPL)

27/53

nVidia TX1 CUDA Notes

Tegra X1 SoC offers very good performance for an
embedded system

GPU is optimized for half-precision performance (1 TFLOP
theoretical)

GPU is ill-suited for double precision tasks

CUDA should utilize zero-copy memory because the SoC
shares its 4GB between the CPU and GPU already

MPI should then be able to directly access the same memory
from the CPU and have good performance

28/53

Facial Recognition- Overview

® OpenCV
— Software package, initiated in 1999/2000
— Objective: real-time computer vision

® Process

Detect faces in images.

Detect faces with live video input.
Machine learning and facial prediction.
Parallelization.

29/53

Facial Recognition- Overview

cascade “cascades/haarcascades/haarcascade_frontalface_default.xml”
¢ = cv2.CascadeClassifier(cascade)

def open-images(im):
ri = cv2.imread(im)
gi = cv2.cvtColor(ri, cv2.COLORBGR2GRAY)
return gi

def detect-faces (im):
gi = open.images (im)
flag = cv2.CASCADE_SCALE_IMAGE
faces = c.detectMultiScale(gi, scaleFactor=1.1, minNeighbors=10, minSize=(100, 100), flags=fl
print “Number of detected faces: {0}”.format(len(faces))
return show_image(gi, faces)

if __name_. == "__main__":
images = [”image.jpg”]
im = Pool(4).map(detect_faces , images)

® Image processing internally parallelized with TBB library.
® [/O data parallelism with Pool().

30/53

Facial Prediction- Overview

® Process:
Read in images. (Potentially on the order of hundreds)
Resize each image consistently!!!
® Drawback: Undefined effect on initial image resolution.
® Solution: Minimalize resize factor.
Separate into two numpy arrays:
® Samples: Image vectors.
® Labels: Assign label to each image vector for classification.
Train algorithm(s) on image datasets.
Predict on face using trained data.
® Implemented Algorithms
— Classification/Supervised learning:
* KNN
® Random Forest
Ada Boost
SVM
Normal Bayes

31/53

Facial Prediction- Results

Approach

0, Ellias, 39, 40, 41, 45, 46, 47, 126, 127
1, Greg, 80, 81, 82, 83

2, Aaron, 84, 85, 87, 88, 89, 90, 91, 92

3, Jordan, 93, 94, 95, 96, 97, 98

4, Caleb, 99, 100, 101, 102, 103, 104

5, Dean, 105, 107, 108, 111

6, Parker, 112, 113, 118, 119

7, Kelley, 120, 121, 122, 123, 124, 125

— Image file with image ranges corresponding to each label.

Results
— Dependent on camera.
Dependent on training data.
Successfully predicts on high-resolution images.
Struggles with low-resolution images.

32/53

Facial Prediction- Parallelization

® Approaches
— Point-to-point communication
® Master process responsible for distributing jobs.
® Interconnect between nodes too slow.
® Overhead from constant communication.
— Dynamic process management
® Each process gets copy of data.
® Upon job completion, worker broadcasts to surrounding
nodes.
® Suffers from slow interconnect speeds.
— Collective communication
® Slices data into even junks.
Scatters among workers.
Worker performs processing on individual chunk.
Master process gathers all processed images.

33/53

Facial Prediction- Collective Comm.

if

--name.. == ”__main__":
comm = MPI.COMM.WORLD
size = comm. Get_size ()
rank = comm. Get_rank ()
samples = []

labels = []

fl =[]

s =[]

=1l

if rank == 0:
data = glob(”Pics/*.jpg”)
slices = [[] for i in range(size)]
for i, slice in enumerate(data):
slices[i % size].append(slice)
else:
data = None
slices = None

sd = comm. scatter (slices , root=0)
fl = Pool(4).map(detect_faces , sd)
labels , samples = break_lists (fl)

s_data
I_data

comm. gather (list (samples), root=0)
comm. gather(list(labels), root=0)

kill_process (rank)

34/53

Facial Prediction- BOB Results

T 128 Images
120 i —=—256 Images ||
100 |1 ——320 Images ||
80 | 8

Execution Time (sec)

Number of Nodes

35/53

Facial Prediction- ALICE Results

—o 128 Images
256 Images

1 K —— g ||
50 ——320 Images
—o 384 Images

100 —=-448 Images ||

50

Execution Time (sec)

Number of Nodes

36/53

BOB vs ALICE- 128 Images

Execution Time (sec)

60

50

40

30

20

10

0 BOB
lIALICE

| i b i

1

2 3 4 8 12 16 20 24 28 32
Number of Nodes

37/53

BOB vs ALICE- 256 Images

Execution Time (sec)

120

100

80

60

40

20

I BOB ||
lIALICE

ILEPRe

1

2 3 4 8 12 16 20 24 28 32
Number of Nodes

38/53

BOB vs ALICE- 320 Images

Execution Time (sec)

140
120
100
80
60
40
20
0

Il BOB

] lIALICE

Wﬂﬂ%mﬂm

1

2 3 4 8 12 16 20 24 28 32
Number of Nodes

39/53

Facial Prediction- Conclusions

e BOB
— Speedup across 64 nodes:
® 128 images: 11.5x
® 256 images: 12x
® 320 images: 11.2x

e ALICE
— Speedup across 32 nodes:

® 128 images: 5.4x
® 256 images: 6.7x
320 images: 7x

384 images: 6.8x
448 images: 7.3x

40/53

FDS - Overview

Fire Dynamic Simulator is a large-eddy simulation (LES)
code for low-speed flows, with an emphasis on smoke and
heat transport from fires.

Takes advantage of parallel processing by dividing models up
into a series of meshes

Each mesh interacts only with the meshes immediately
spatially adjacent to it, monitoring things like air flow and
heat transfer

It is best if one mesh is assigned to one processor, although it
is possible to assign multiple meshes to a processor

41/53

Execution Time (s)

16000

12000

8000

4000

FDS - Scaling Results

Execution Time (s) vs. # of Meshes

®
® °
° ° ®
0 4 8 12 16 20 24 28 32 36
of Meshes

Figure 14: FDS results on BOB

® Total
Elapsed
Wall Clock
Time (s)

Execution Time (s)

105000

90000

75000

60000

45000

30000

15000

0

FDS - Scaling Results

Execution Time (s) vs. # of Meshes

0 4 8 12 16 20 24 28 32

of Meshes

36

@® Total
Elapsed
Wall Clock
Time (s)

Figure 15: FDS results on ALICE

43/53

WRF - Overview

Atmospheric modeling system for weather prediction
National Center for Atmospheric Research, the National
Oceanic and Atmospheric Administration, Air Force Weather
Agency, and many more

Domain is divided into grid, grid cells updated concurrently
by each worker node

Primary challenges:

— compiling WRF and dependencies on BOB
— Network bottleneck when utilizing large number of worker
nodes

Test case - Hurricane Katrina

44/53

Execution Time (s)

WREF - Scaling Results

800

600

400

200

0

10 20 30 40 50 60
of Nodes (4 Processes Per Node)

45/53

Gillespie Algorithm

Broadly used in chemistry, biology, and economics for
stochastic simulations

Utilizes master equations and associated rates to create a
time-based model of reactions in a system

Implemented with 2 Monte Carlo steps, thus is an expansion
of the previous Monte Carlo application on BOB

Single simulation designated to single core

— No division of computation or parallelism
— Limited to 64 computations at any given time on BOB

Simulations can run indefinitely

46/53

Gillespie Algorithm - Steps

. Initialization: concentration of each species and rates of

reaction equations

. Propensities: calculate the likeliness of each reaction to occur

— A propensity is calculated by u; = C; * r; for each reactant
species (on left side of the arrow)

— If the sum of propensities ever reaches 0, no more reactions
can occur in the system

. Monte Carlo - Time: time step is chosen using At = o In k

where k € (0, 1) and (i, 1 the sum of the propensities

. Monte Carlo - Reaction: a reaction is chosen randomly,
weighted by propensities

. Update: concentrations are updated based on which reaction
is chosen in previous step

47/53

Gillespie Example 1

® Species

e Equations

® Initial Propensities

E

S

ES | P

10

11

12 |5

E+S—ES | 04

ES — E+S | 0.35

ES — E+P | 0.25

E+S — ES | (10%0.4) + (11 x0.4) = 8.4
ES — E+S 12%0.35 =42
ES — E+P 12%0.25 =3

48/53

Gillespie Example 1 Results

30

[}
(e}
-

Concentration

—
)

ML

A N

0
0

200 400 600 800 1,000 1,200

Time (ms)

49/53

Gillespie Example 2 Results

30

S
N
~

Concentration

—
=]

| | A[\Mﬁ\
0 500 1,000 1,500

Time (ms)

50/53

Gillespie Example 3

® Species
A|B|C
1000
e Equations
A—B 033
B—-C | 033
C—A|034

® Initial Propensities
A—B|[10%x033=33
B—+C| 0x033=0
C—A| 0x034=0

51/53

Gillespie Example 3 Results

Concentration

0 20 40 60 80 100 120 140

Time (ms)

52/53

Big Orange Bramble+
BOB and ALICE

High

Performance
Computing

December 2, 2016

53/53

	Hardware Overview
	Software Stack Overview
	Enclosure
	Daughter Card
	Monitor Node
	Fan & Reset Controller
	Pine64 Issues
	Slurm
	Accounting
	Benchmarking
	Facial Recognition
	FDS
	WRF
	Gillespie Algorithm

