

# Neuromorphic Array Communications Controller

Aaron R. Young<sup>1</sup> and Mark E. Dean<sup>1</sup>

University of Tennessee, Knoxville, Tennessee, U.S.A



## **Background and Motivation**

• Neuromorphic hardware is increasing in both speed and size.



- Previous communication method with USB 3 Cypress EZ-USB FX3<sup>1</sup> was maxed out with DANNA 1.
- Communication patterns and requirements unique to spatialtemporal spiking data.

#### **Communications Considerations**

## Monitoring

- Real-time monitoring for developing and debugging.
- Provides valuable feedback to analyze the system.
- Detect security or safety vulnerability.

#### Optimization

• Host can be used to drive real-time learning and optimization of the neuromorphic network via evolving networks at runtime.

# Host to Array Communication

- Operational commands (Configuration, Control)
- Real-time data (Input Spikes, Output Spikes)
- Scale to External Interfaces
- Translate input/output between spiking and non-spiking to allow for connection with external devices.

Inter Sub-array Operation

• The sub-arrays need to be able to function together as a large array of elements, capable of running large neural networks.

### **Communication Testing**



#### **Conclusions**

- Room to scale.
- Surpasses limitations of FX3.

transmitted per function call.

Throughput experiment, varying the amount of data

- Maximum throughput occurs with large transfers.
- Hardware is able to evaluate arrays in constant time per cycle, whereas, the simulator grows linearly with the number of events.

## **Communications Board Design**







Diagram of Current NACC Setup (Pictured Left)

⇒ = Sub-array Communication

#### Results



- The communication latency is slower than the neuromorphic arrays.
- Delay cycles are added to synapses crossing the board boundary to hide this latency.
- Hardware communication patterns match simulated communication patterns.
- The width of the grid is half of the height.
- The number of inputs/outputs is equal to the height.



• The hardware is faster when the network is simulated for more cycles, when the internal activity to input activity ratio is greater, and when the number of elements increases.

## Acknowledgements













https://www.xilinx.com/products/intellectual-property/aurora8b10b.html