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Background and Motivation

* Neuromorphic hardware 1s increasing in both speed and size.

Global Array
Clock 10 MHz
Size 1 MHz 1000x1000 100 MHz
70x70 10,000x10,000
DANNA 1 DANNA 2 DANNA 2
FPGA FPGA VLSI

* Previous communication method with USB 3 Cypress EZ-USB
FX3' was maxed out with DANNA 1.

* Communication patterns and requirements unique to spatial-
temporal spiking data.

Communications Considerations

e Real-time monitoring for developing and debugging.

Monitoring e Provides valuable feedback to analyze the system.
e Detect security or safety vulnerability.
e Host can be used to drive real-time learning and
Optimization optimization of the neuromorphic network via

evolving networks at runtime.

e Operational commands (Configuration, Control)

Host to Arra
J e Real-time data (Input Spikes, Output Spikes)

Communication

e Translate input/output between spiking and

Scale to External non-spiking to allow for connection with external devices.

Interfaces

e The sub-arrays need to be able to function together as a

Inter Sub-array large array of elements, capable of running large neural

Operation networks.
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FPGA Boards used for test setup:
* VC707 with Virtex7 485T.
 HTG-777 with Virtex7 690T.

Round Trip Time Comparison

_ 2 80.38
R 1 [~—Fx3 i
1 ,500 —=— PCle with FX3 Emulator S 80 | - |
Q - 1 | PCle g
2 1 |—PCle 64 E 60| i
m - 7| |—+—Aurora x1
> B | |-*-Aurorax2 g 40 .y
K= 1r000 - - Aurora x1 Stop-and-Wait ARQ —g 20
- i | |-®-Aurora x1 Go-Back-N ARQ = =
2. | |+ Aurora x2 Go-Back-N ARQ é |574| |569| |573| |5'71| |5'7| |574| |576|
E | 0 I I I I I I I I
S I
" o DN o000 Q0
§ 500 | ‘JVQ,(/} \%0 T ‘;wyg-yg-?g-
< S & T ATV
= : & & & &
i o Kad o v ot o
i < F D
0 @S S IR
102 103 104 10° & o® S
Transfer Size in Bytes o TR
R NSRS
Throughput experiment, varying the amount of data SO
transmitted per function call.
Conclusions

* Room to scale.

 Surpasses limitations of FX3.

e Maximum throughput occurs with large transfers.

e Hardware 1s able to evaluate arrays in constant time per cycle,

whereas, the simulator grows linearly with the number of events.
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Communications Board Design
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System Interfaces

<——— = Spiking Event Communications i i \
[sse| [ssE|---[ssE|

SSE = Spiky Synaptic Element

[sse| |ss| "':|SSE|
SSE = Spiky Synaptic Element

<———— = NN Config./Ctrl., Monitoring, Spiking Event Input/Output, Optimization

= NN Config., I/O, Monitoring
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Connection/Packet Types
@ = Host Packets via PCle Bus

<——— = Communication Board Packets via Aurora
= Sub-array Communication

Diagram of Current NACC Setup (Pictured Left)

Results

Ay . * The communication latency is slower than the
erage Neuromorphic Array Frequency .
7 neuromorphic arrays.
* Delay cycles are added to synapses crossing the
board boundary to hide this latency.
e Hardware communication patterns match
simulated communication patterns.
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* The width of the grid is half of the height.
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Delay Cycles Added . .
e The number of inputs/outputs is equal to the
height.
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e The hardware 1s faster when the network 1s simulated for more cycles, when the
internal activity to input activity ratio is greater, and when the number of
elements increases.
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